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ABSTRACT

The problem of how to train variance parameters on scarce data
is addressed in the context of text-dependent, HMM-based,
automatic speaker verification. Three variations of variance
flooring is explored as a means to prevent over-fitting. With the
best performing one, the floor to a variance vector of a client
model is proportional to the corresponding variance vector in a
non-client multi-speaker model. It is also found that adapting
the means and mixture weights from the non-client model while
keeping variances constant works comparably to variance
flooring and is much simpler. Comparisons are made on three
large telephone quality corpora.

1. INTRODUCTION

In practical applications, Automatic Speaker Verification (ASV)
systems are generally used in contexts where very few client
enrollment data are available. One problem with using small
training data is the risk of over-training, that is, parameters of
the client model are over-fitted to the particular training data.
Especially variance parameters are susceptible to over-fitting: a
variance estimated from only a few data points can be very
small and might not be representative of the underlying
distribution of the data source.

The maximum likelihood (ML) principle is often used in
training parameters of continuous density hidden Markov
models (HMM). The most general implementation of that
principle (the EM-algorithm) consists in optimizing all
parameters of the HMM, including means and variances of state
pdfs. With sparse training data from a client, speaker variances
tend to be over-trained [1].

One way to modify the EM-algorithm is to impose a lower
bound on variance parameters, a variance floor. With this
method any given variance value will have its corresponding
floor value as a lower bound during iterations of EM. A new
problem is then how to compute this floor value. Within the
CAVE-project a method to compute variance floors is
suggested [1]. With this method, all variance vectors of all
HMMs in a speaker model share one flooring vector. This
vector is estimated as the variance over some calibration data
set multiplied by a constant variance-flooring factor. The
calibration data set can be for instance the same data used to
train non-client models.

Variance flooring can be implemented with several levels of
“resolution” in up to three “dimensions”. The first dimension is
the vector index, where resolution can range from a scalar floor
where all components of a variance vector share a floor value,

to a floor vector where each component has its own floor value.
The second dimension is time (represented by a state sequence
in a left-right HMM) where a unique floor can be shared by
variance vectors within all states in all models, ranging to each
state having its own floor. The third dimension is feature space,
where different parts of the feature space may have their own
floor. An example of the latter is when each Gaussian term
within a composite pdf has its own floor value.

An alternative modification to the EM algorithm is to keep
variances fixed while updating means and transition
probabilities [2]. In the context of speaker verification where a
non-client model is often used for likelihood normalization, the
variances of the client model can be copied from the non-client
model. A non-client model is often trained on a lot of data from
many speakers and all parameters of the model can be reliably
estimated with the original EM-algorithm. If non-client model
variances are used systematically in client models, client
variances become client-independent.

In this paper we compare several variations of the two principle
modifications to the EM-algorithm mentioned above. The
comparison is made on three separate telephone quality
databases: Gandalf [5], SESP [6] and Polycost [7]. The
recognition tasks are slightly different, but are all some form of
text-dependent task using digits.

From the variety of possible variance flooring methods we try
three variants with gradually increasing resolution: model-
dependent, state-dependent and mixture component-dependent
vector floors. The various floor vectors are computed as an
empirical constant times a basis vector, like in [1]. The basis
vector is derived from speech data or directly from a multi-
speaker model.

Since the variance flooring technique involves the setting of an
empirical constant, its usefulness depends on to which extent
the choice of an optimal scaling factor will generalize from
development data to new evaluation data. In this paper we
describe a series of experiments to investigate on such
generalization properties.

2. SYSTEM DESCRIPTION

A text-prompted ASV system based on word-level HMMs [3] is
built on a generic platform for speaker verification systems
called GIVES (General Identity Verification System). The input
signal is pre-emphasized and divided into one 25.6 ms frame
each 10 ms and a Hamming window is applied. For each frame
a 12-element cepstral vector and an energy term is computed,
and those are appended with first and second order deltas.
Cepstral mean subtraction is applied to the 13 static



coefficients. In most experiments MFCC ceptral vectors are
used. They are computed from a 24-channel, FFT-based, mel-
warped, log-amplitude filterbank between 300-3400 Hz
followed by a cosine transform. The energy term is the 0’th
cepstral coefficient. In the end of section 4 the MFCCs are also
replaced with LPCCs, where parameters from a 16-pole linear
prediction filter are computed with the autocorrelation method
and are transformed to 12-element cepstrum. The energy term is
then the raw log-energy within each frame of samples,
normalized within each utterance to have constant maximum
amplitude for every utterance. All cepstral vectors are liftered to
equalize the component variances. Total vector dimension is 39.

A speaker model has 10 word-level left-to-right HMMs, one for
each digit. Each HMM have two states per phoneme and a
mixture of eight Gaussians per state. A non-client multi-speaker
model is used for log-likelihood normalization on a per-word
basis. Each word score is further divided by the number of
frames in the word segment, and finally averaged over words in
the utterance. Non-client model HMMs are also left-to-right and
have the same dimensions as the client HMMs.

The non-client model is selected individually for each client and
each word during enrollment as one of two competing gender-
dependent multi-speaker models, with no a priori information
on the gender of the client. When training the client model, the
best matching multi-speaker model is copied as a seed for the
client model. Depending on the variance estimation method to
be used, client model training proceeds in one of the following
ways:

a) Client-independent variances: the client model
means and mixture weights are re-estimated from
enrollment data while variances are kept constant.

b) Variance flooring: client model means, mixture
weights and variances are re-estimated from
enrollment data. Variances are floored with one of
three alternative methods.

Transition probabilities are kept constant in both cases. The
three flooring methods are implemented as follows. Basis
vectors with the same resolution as the flooring vectors are
derived either directly from speech data or from a non-client
model. Each floor vector is then set proportional to the
corresponding basis vector. The scaling constant is unique for
the entire system. The basis vectors are derived in one of the
three following ways:

e model-dependent floor: the basis-vector for word
model w is the variance of all vectors within
segments identified as this word

e state-dependent floor: the basis-vector for a state s
in word model w is computed as a linear
combination of variance parameters of the mixture
Gaussian in state s in a non-client model

e  mixture component-dependent floor: the basis-
vector for a mixture component / in state s of model
w is the variance of mixture-component / in the non-
client model.

The HMMs are implemented with HTK [4] with minor
modifications to allow for training models on sparse data. The
parameters of HMMs in multi-speaker models are estimated
with EM-algorithm, with a crude fixed floor of 0.01 for all
variance parameters. Initial parameters for a single-Gaussian
model is first computed from Viterbi alignment of training data
and are further trained with Baum-Welch re-estimation. The
Gaussian terms are then split in two and the resulting mixture-
(Gaussian is again re-estimated. This procedure is repeated until
there are eight Gaussians per state. This procedure is done
independently for each HMM in the client model. The system
depends on explicit segmentation of the input speech into words
during both enrollment and test, the segmentation being
produced by a speech recognizer (see Table 2).

3. DATABASE AND PROTOCOL

Three database [5,6,7] have been used in the tests. One of them,
Gandalf, has been divided into two separate parts which are
used as if they were two different databases in this paper. Table
2 summarizes the main features of the databases. They are all
digital telephony databases recorded through ISDN. The
notation used for enrollment sets is NsMh-T, where N is number
of sessions, M number of handsets, and T is the approximate
(effective) amount of speech in minutes. The norm for the
amount of speech is Gandalf where 25 five-digit sequences are
estimated to one minute of speech (one digit is then %2 second).

Some additional facts not included in the table: Polycost test
was baseline experiment 2 as defined in [6]; enrollment set on
SESP is referred to as G in previous literature [1]; segmentation
into words is made with a speech recognizer operating in forced
alignment mode given the prompted text.

4. EXPERIMENTS AND RESULTS

Results are presented in terms of equal-error-rates (EERs) based
on same-sex impostor attempts and a client-independent a
posteriori threshold. In each figure, the left-most data points,
labelled ‘fixv’, indicate client-independent variances. The
remaining data points show error rate as a function of the
scaling factor of some variance flooring method. This way,
performance of client-independent variances and variance
flooring can be compared within each figure.

Figure 1 compares the three different variance flooring methods
on all three databases. It can be seen that the higher resolution
in flooring, the less critical is the choice of scaling factor, since
the minima in those curves are much wider and the position of
the minima are closer to each other than for low resolution
flooring. To investigate in detail on the lowest achieved error
rates, Table 1 shows the average improvement when going from
client-independent variances to each of the three variance
flooring methods. Two cases are shown: First, the scaling factor
has been chosen as the a posteriori best one for each of the
databases. Second, a global scaling factor for all databases was
chosen as the a posteriori best one for Gandalf development set.
This corresponds to using that database as development data
and testing the resulting system on the other three databases.
There is a clear trend that higher resolution in variance flooring
is better than lower, and only for the mixture component-



dependent floors is the average error-rate lower than with
client-independent variances.

Since the variance flooring method is applied to avoid under-
training of variances on sparse training data, it can be expected
that for a given recognition task and database, the need for
flooring would systematically decrease with increased size of
the enrollment set. The more training data the more should
variances need to be floored. Hence, one can expect the optimal
scale factor in variance flooring to decrease with larger
enrollment sets. Such a trend is clearly visible in Figure 2 where
we compare enrollment sizes from 0.3 to 1 minutes (3 to 12
training examples per digit).

One could further expect that with larger enrollment sets,
variance flooring should be better relative to client-independent
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Figure 2. Comparison between different enrollment set sizes
and 1-session, 1-handset (1s1h) enrollment on Gandalf
(development set). Variance floor is state-dependent and the
fixv-points shows results for client-independent variances.
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Figure 3. Comparison between MFCC-based and LPCC-based
features. Each curve contains results with fixed, client-
independent variances (fixv) and with variance flooring with
state-dependent floors. Experiment is done on Gandalf
(development set).
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¢) mixture component-dependent variance floor:
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Figure 1. Comparison between same-sex EERs with fixed,
client-independent variances (fixv) and with the three
alternative flooring methods for the three databases: a) model-
dependent floor, b) state-dependent floor and ¢) mixture
component-dependent floor.

variances than with smaller enrollment sets. There is no clear
evidence for this in the figure.

Finally we compared the MFCC-based features we used so far
with LPCC-based features. Figure 3 shows error-rates for state-
dependent floors on the Gandalf development set. On other
databases too we observe that the optimal scaling factor is
different for the two parameterizations and it seems that a
scaling factor optimized for one parameterization may not be
reusable for another.



Flooring level individual scale global scale factor
factor
Model -8% -11% (0.60)
State 4% -3% (0.80)
Mix-comp 3% 3% (1.10)

Table 1. Average improvement (negative values indicate a
deterioration) for variance flooring over client-independent
variances. The average is taken over all databases. The global
scale factor (shown in parentheses) was chosen from the
Gandalf development set.

5. CONCLUSIONS

We have compared two modifications of the EM-algorithm for
HMM ftraining on sparse data in the application of text-
dependent speaker verification. The first is to copy variances
from a non-client multi-speaker model and then keep them
fixed while the EM-algorithm is applied to means and mixture
weights. In the second method, variances are trained but they
are floored after each iteration of EM. Three variants of the
variance flooring method with different resolution were tried
and it was found that the one with the highest resolution, i.e.
when the floor for the variance vector of a given Gaussian is
proportional to the corresponding variance vector in the non-
client model, was the best performing one. The optimal scaling
factor for this kind of variance flooring was found to be around
1.10, which means that all variances are actually larger than
with the client-independent variances.

Compared to the best performing variance flooring method,
speaker-independent variances seem to work comparably
without the need to estimate an empirical scaling factor for a
variance floor. This trend is observed on three different
databases, with two distinct parameterizations.

These results consolidate similar observations made in [2] and
at recent NIST evaluations in text-independent ASV [8] that
client models trained as adaptation of multi-speaker models
with keeping covariance matrices constant brings a significant
advantage, especially in the case of very scarce enrollment data.

The results open new tracks in the search for improved
procedures and models in estimating client variances in the
context of scarce enrollment data.
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Test database Gandalf Polycost SESP
Set dev eval
language Swedish English Dutch
Task native speakers 100 % ~15% 100 %
enrollment 1s1h-1.0° 2s1h-0.6 4s2h-0.9"
password 2 x 4 digits 10 digits 14 digits
clients 22 /18 24 /18 61 /49 21/20
Test impostors 23/18 58732 61/49 21720
population total number of true-speaker tests 927 886 664 1658
false-speaker tests (same-sex) 790 1926 6012 763
off-line database SpeechDat Polycost Polyphone
Non-client speakers 399 /561 11/11 24 /24
population total time (approx.) 5h 0.5h 0.3h
examples per digit and speaker 4 19 5
System speech recognizer for segmentation HTK Nuance Phicos

Table 2. Summary of main features of the three databases and their protocols. Number of speakers are given as #male/#female. Tn
Figure 2 the enrollment set is varied between 0.3-1 minute length. “The number of handsets is an estimate.



