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ABSTRACT

We describe techniques used in the development of an automatic
annotation system for use with a concatenative text-to-speech
synthesis system. The goal of the system is to generate auto-
matically from word-level transcriptions annotations that result
in synthetic speech of the same quality as that produced from
hand-labelled speech. Our approach in this work has been to
use the standard technique of “forced-alignment” to each utter-
ance and to refine both acoustic and pronunciation modelling
to achieve greater alignment accuracy. Acoustic models were
improved by Bayesian speaker adaptation and the use of con-
fidence measures from N-Best decodings to produce speaker
dependent HMMs. Pronunciation modelling improvements in-
volved the use of a large pronunciation dictionary containing
multiple pronunciations for many words, pronunciation proba-
bilities, the accommodation of interword silences and using in-
formation derived from existing manual annotations to guide the
recogniser during decoding. At present, the system can reli-
ably produce time-aligned phonetic alignments for UK accents
in which the automatic and manual alignments agree on the seg-
mental labelling 93% of the time. It places boundaries with an
rm.s. error of 14.5 ms from the manual boundary. Subjectively,
speech produced using automatic alignments is highly intelli-
gible if not quite as good as that produced from manual align-
ments.

1. INTRODUCTION

The development of high quality concatenative text-to-speech
synthesis systems requires large databases of speech which are
precisely phonetically annotated. In particular, “re-voicing” (the
production of a new voice for the synthesiser) requires the an-
notation of a large amount of speech from the speaker, which is
very expensive. Although automatic methods have been devel-
oped for the production of such annotations, they are generally
used in the training of speech recognisers where any inaccu-
racies in annotation or alignment are to some extent smoothed
when the data is incorporated into a statistical model. Annota-
tion for text-to-speech synthesis demands a higher level of ac-
curacy as any substantial errors in either labelling or alignment
will noticeably degrade the quality of speech output. In this
paper, we describe the development of a system which automat-
ically annotates a speech utterance given a word level alignment
of the utterance. Our approach has been to improve both the
acoustic and language modelling of a standard hidden Markov
model (HMM) speech recognition system (HTK V2.1) which
is used in “forced alignment” mode. Although we have used
objective measures of the accuracy of our system during devel-
opment, our ultimate evaluation of its quality was by assessing

the quality of speech it produced when compared with a system
built using manually annotated speech.

2. DATA

The “Laureate” text-to-speech system [3] currently utilises man-
vally annotated speech data taken from a database recorded at
British Telecom. This consists of 239 sentences spoken by five
speakers (two adult males, two adult females and one female
child) and recorded to a hi-fi standard in a quiet room. The
style of speech differs widely between speakers, ranging from
experienced professional speakers to an untrained child speaker.
A single manual transcription of each sentence was made by a
professional phonetician using a 45 phone set taken from the
SAMPA symbol set.

3. ASSESSMENT OF ANNOTATION ACCURACY

3.1. Figures of merit

In order to assess the quality of the annotation produced by our
automatic systems, it was assumed that the manually produced
alignment represented a reliable reference, and the automatic
alignments were compared with this. It is well known that man-
val alignments show some variation from transcriber to tran-
scriber [6] but this variation is generally small when compared
with alignments currently produced by automatic systems.

After a set of automatic alignments had been made, the fol-
lowing figures-of-merit were estimated for the system:

1. The accuracy A of the string of phoneme symbols pro-
duced by the automatic system compared with the refer-
ence symbol string. Accuracy is defined here in the usual
way as A = 100 x (Nc —Nj) /N, where N is the total num-
ber of phonemes in the reference string, N the number
of phonemes which match in the correct sequence in both
the automatically generated and the reference strings and
Ny the number of phoneme insertions in the automatic
string when compared with the reference string. This
definition is unrealistic in cases where the phoneme se-
quences match in the two strings but there are gross dif-
ferences in the position of the segment boundaries. How-
ever, this occurs very rarely and the definition avoids the
need to define arbitrary time-limits within which it may
be considered that the two segmentations match.

2. Timing boundary errors were calculated for exact symbol
matches only. The difference between the position of the
boundaries of the reference and the automatic alignment
segmentations for these symbols was estimated and the
following figures of merit were derived:



Class Symbols in Class
0 Ual, @,i, @U, el {,u,Q,A,E, V,0,
al, OL 1@, E@, U@, 3,1, w, j, 1

1 T,v,s,f,z,h,tS,S,dZ, Z
2 k,t,D,n,d, N, m, g,p, b, M
3 #:

Table 1: The four phone classes.

(a) The mean alignment error y, and R.M.S. alignment
error G, for the system.

(b) The time interval Tgg which included 90% of the
alignment errors.

The system used by Wightman and Talkin in [7] was adopted
to classify and analyse alignment errors. The phoneme labels
are divided into four broad classes as shown in Table 1 and the
figures of merit shown above are computed for each class-class
boundary. The o, and To9g values quoted here are the average
figures over all transitions.

3.2. Quantisation limit on alignment accuracy

If the speech waveform is sampled at f; Hz then clearly a seg-
mentation boundary may be placed with a resolution of 7Ts =
1/fs s. However, a pattern-matching ASR system blocks the
speech signal into “frames” which are computed every Ty sec-
onds, where Ty > Ts. Hence this type of system can place a
boundary with a resolution of only Tys (typical figures for Ty
and T; are 0.01s and 0.0001s respectively). As a consequence,
a system which used frame-based processing and was “perfect”,
in the sense that it located each boundary as accurately as possi-
ble, would suffer from a quantisation error whose R.M.S. value
is given by E; — Tf/\/ﬁ (see, for instance, [1]). We used a
frame rate of 100 Hz throughout these experiments so 7' = 0.01
and £, = 2.9ms. Clearly, this error can be improved by increas-
ing the frame-rate but at a penalty of increasing processing time.
In practice we found that this quantisation error was swamped
by other errors.

4. DEVELOPMENT OF SYSTEMS

In this section, we discuss the development of several automatic
alignment systems. Summary results for the systems are given
in Table 2.

4.1. System 0: Reference system

To ascertain the best performance obtainable from an automatic
aligner of this type using the data provided, we built speaker
dependent HMMs for each speaker using all the available data
from that speaker. The front-end representation used was 8
MFCCs with velocity and acceleration coefficients and log-energy.
The HMMs were context-independent monophones with 3 emit-
ting states and a single Gaussian distribution per state with a di-
agonal covariance matrix. These were used to force alignment
to the reference phoneme strings. This system is unrealistic in
that the models are trained on data already manually segmented
and the system is supplied with the required correct phoneme
string rather than a word level transcription. However, zero
phoneme choice error is guaranteed and the use of the same data
for training and alignment leads to excellent acoustic matching

and alignment. The results were as follows: x, = —1.84ms,
G, = 12.3ms and Ty = 24.8ms. Figure 1 shows the mean align-
ment error and the Ty points for each class-class transition.
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Figure 1: System 0 u, and Tog values (ms)

Figure 1 shows that there is considerable variation in the accu-
racy of boundary placement by the system. Fricative — voiced
transitions and vice-versa (10 and 01), for instance, are quite
accurately marked, whereas stop/nasal — silence transitions are
subject to considerable error.

4.2. System 1: Multi-speaker models and multiple word pro-
nunciations

A more realistic aligner was made using a single set of “multi-
speaker” models built to the specification described in section
4.1 and using all the available data in the BT database. The
reference phoneme string was not used for alignment purposes;
rather, pronunciations for each word in the sentence were de-
rived from the British English Example Pronunciation (BEEP)
dictionary (v0.7). Many words had multiple pronunciations and
these alternatives were used to build a network for the Viterbi
decoder. It should be noted that this aligner is still not represen-
tative of performance expected from a real system since the data
used for model training was manually-segmented and the data
under alignment was also used for training. Results were as fol-
lows: A=94.8%, u, = —1.6ms, 6, = 17.1ms and Tyy =36.1ms.

4.3. System 2: Speaker-independent models and multiple
word pronunciations

A final system must be able to produce high quality alignments
for any U.K. speaker. This requires much better acoustic mod-
elling than can be provided by the small BT database of five
speakers. We therefore used the WSJCAMO database [4] to
build speaker-independent (SI) models to annotate the five BT
speakers. Use of this large multiple-speaker database enabled us
to build a rich set of HMMs consisting of 10 component mixture
densities to model context-independent monophones. The net-
work used was provided by the BEEP dictionary as described
in section 4.2. The potential mismatch in recording conditions
between training and testing was alleviated to some extent by
the use of cepstral mean subtraction. Results were A = 92.74%,
e = —1.58ms, 6, = 16.89ms and Tgo = 36.1ms. This result is
close to the result obtained using multi-speaker models trained
upon the annotation data itself and suggests that the large num-
ber of speakers and volume of data available from WSJCAMO
was more important than the fact that it was recorded under dif-
ferent conditions from the BT data and was itself automatically
labelled at the phoneme level.



4.4. System 3: Use of pronunciation probabilities

It was noticed that the BEEP dictionary did not contain some
of the pronunciations encountered in our data and also, it gave
no indication of the relative likelihood of different pronuncia-
tions. We used the manually-transcribed pronunciations in the
BT database to:

1. add new pronunciations to our dictionary;
2. estimate probabilities of the pronunciations of each word.

These new pronunciations and probabilities were incorporated
into our recognition network. Results were as follows: A =
94.8%, ue = —1.6ms, 6, = 17.1ms and Tgg = 29.3ms. The
phoneme accuracy using these strings is extremely good, but
the result must be treated with caution as some pronunciations
and all probabilities were derived from material which included
the material under annotation. At time of writing we are investi-
gating deriving pronunciation probabilities independently from
another database.

4.5. System 4: Modelling inter-word silences

Many utterances in the BT database contain short pauses be-
tween words. Direct use of the pronunciations provided by the
BEEP dictionary does not allow for this, causing poor align-
ments and inappropriate silences in the resultant synthesised
speech. This deficiency was rectified by allowing pronuncia-
tions to be followed by a silence. Results were A = 92.43%,
e = —0.95ms, 6, = 15.61ms and Tgo = 38.2ms. This mod-
elling improved the synthetic speech quality by removing si-
lences which were labelled as speech but had the negative ef-
fect of occasionally matching a silence within a stop to a silence
model which can have a severe effect on the quality of the syn-
thesized speech.

4.6. System 5: Speaker Adaptation

If some labelled data from a speaker is available, SI systems
can be improved by adapting their models to the voice of a new
speaker using his data. This is an attractive option for automatic
alignment systems as although it may be unfeasible to manu-
ally annotate a large amount of data from a speaker, it may be
possible to annotate a small amount to give a few examples of
each phoneme. We experimented with using 10, 20 and 30 of
the manually annotated sentences from each of the five speakers
and using the Bayesian learning algorithm described in [2]. This
technique reduces the mixture distribution for each state to a sin-
gle Gaussian distribution whose mean and variance are adapted
to the new speaker. Best results were A = 93.06%, u, = 4.84ms,
G, = 18.6ms and Tgg = 37.5ms. This represents a decrease in
phoneme choice error over System 4 but the alignment error was
slightly worse.

4.7. System 6: Use of reference pronunciation strings

Full modelling of the effects of co-articulation would require a
complex rule-based system. However, the manually annotated
reference strings supply information on pronunciation and co-
articulation effects occurring in the sentences in the BT database,
and this information can be used to aid alignment. The reference
pronunciation strings were added to the networks generated au-
tomatically by the dictionary. During alignment, the string pro-
vided by the current speaker was removed from the network to

ensure the independence of the result. This technique was used
with the HMMs from System 2. Results were A = 93.12%,
e = —1.29ms, 6, = 16.26ms and Tgo = 38.2ms. As for sys-
tem 3, these results pre-suppose the existence of some manually
annotated speech from which these strings may be derived.

4.8. System 7: Confidence measures for bootstrapped SD
models

The alignment process consists of finding the optimal path through
a network of possibilities which are generated by different pro-
nunciations. It has been shown [5] that examination of the al-
ternative less likely paths can be used to supply a measure of
confidence in which parts of the transcription represent correct
decodings of the speech waveform. We configured our system
to output the 100 best decodings of the sentence and compared
the top decoding with the other 99. For each phoneme in the
top decoding, the number of other decodings that included this
phoneme in the same position was noted. The proportion of the
total decodings that included this phoneme was taken as an es-
timate of the confidence that the phoneme was correct. A set of
speaker dependent HMM’’s was then generated using the top de-
coding to provide a labelling but ignoring any data that did not
have a confidence probability above a chosen threshold. These
single Gaussian HMM’’s were then used with the pronunciation
networks of System 6 to generate annotations. Results were
A=93.42%, u. = —1.39, 6, = 14.48ms and Tyg = 34.4ms. Fig-
ure 2 shows the mean alignment error and the Ty points for each
class-class transition.
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Figure 2: System 7 u, and Ty values (ms)

Comparison of Figures 1 and 2 shows that System 7 is close in
performance to the reference system, System O.

4.9. Summary of objective measurements and comments

A summary of the results for each system is given in Table 2. All
time values are in ms. In Table 2, systems which are “unrealis-
tic” to any extent (in the sense that they rely on the use of pre-
existing manually annotated data) have results in italic—these
are systems number O (the reference system), 1 and 3. Hence
there is an increase in average phoneme accuracy in the perfor-
mance of the successive “realistic” systems numbers 2,5,6 and 7
whilst the alignment accuracy for systems 2,4,5, and 6 is about
constant. System 7 shows the best phoneme accuracy and the
best alignment figures of all these systems. The system reported
in [7] did not report phoneme accuracy because of the difficulty
of comparing transcriptions which used different symbol sets,
but it reported overall figures of 4, = 2.1 and 6, = 23.4 ms when
aligning data from the same database as used for training.



System Phoneme accuracy Alignment accuracy (ms)

Total errs A He C. Too
0 0 100.0% || -1.84 | 12.3 24.8
1 3327 9333% || 1.29 | 15.21 32.1
2 3616 92.74% || -1.58 | 16.89 36.1
3 2604 94.77% || -1.60 | 17.14 29.3
4 3769 9243% || -0.95 | 15.61 382
5 3462 93.06% || 4.84 | 18.55 37.5
6 3429 93.12% || -1.29 | 16.26 382
7 3276 9342% || -1.39 | 14.48 344

Table 2: Summary of phoneme choice accuracy and alignment
accuracy for the seven systems.

Synthetic Voice

Cause Female | Male
Vowel Substitutions 15 18
Silence Insertion 4 11
Stop / Plosive 5 2
Nasal / Fricative 0 5
Other 12 12
Total 36 48

| Percentage of total phonemes || 0.66% | 0.49% |

Table 3: Pronunciation Errors in Synthesised Speech.

5. SUBJECTIVE EVALUATION

Synthetic speech based on both the automatically and manually
annotated data of a male and a female speaker in the BT database
was created using the “Laureate” system. Realisations of 90 sen-
tences were generated for each of these four “voices” using Sys-
tem 4. Each sentence generated using automatic annotation was
replayed and compared to the corresponding sentence made us-
ing manual annotation. Faulty or unusual pronunciations which
occurred in the automatically annotated utterances but not in the
manually annotated utterances were carefully scrutinised to de-
termine which triphone, diphone or monophone had caused an
error. The annotations were then examined and the error noted.

Results are shown in Table 3. o )
These results indicate that phoneme substitution and inser-

tion in the automatic annotations are the major cause of gross
errors in the synthesised speech. Subjectively, the quality of
the speech produced by the automatically annotated system is
not quite as good as that from the manually annotated system.
We suspect that some poor alignments in the automatically an-
notated system led to an overall poorer quality of speech than
that generated by the manually annotated system, but this effect
is much more subtle than the effect of phoneme substitution or
insertion.

6. DISCUSSION AND FUTURE WORK

We have described some techniques to improve the accuracy of
automatic annotation of speech waveforms. These included the
use of a large database to build rich HMMs, speaker adaptation,
the use of confidence measures to label phonemes, the use of a
pronunciation dictionary containing multiple pronunciations for
many words, pronunciation probabilities, the accommodation of
interword silences and using information derived from existing
manual annotations to guide the recogniser during decoding.

Objective measurements were used to evaluate the efficacy of
these techniques and a final subjective assessment revealed that
synthetic speech obtained from a completely automatic annota-
tion system was of high quality although not quite as good as
that obtained from a manual system. Listening revealed that er-
rors caused by phoneme substitutions and insertions were much
more intrusive than effects from poor segmentation.

In some cases, incorrect phoneme choice was caused by
the fact that the pronunciation uttered was not present in the
dictionary, usually because it was pronounced rapidly and was
reduced or elided with adjoining words. We therefore plan to
extend this work to incorporate a model of continuous speech
effects (which has been recently developed at BT) into our pro-
nunciation networks. The use of existing manually annotated
data or even of just manually derived phoneme transcriptions
was found to be highly beneficial for automatic annotation ac-
curacy and this opens up the possibility of making use of a lim-
ited amount of manually processed data for re-voicing. Speech
is cheap to record but expensive to process and another area we
have not yet investigated is the trade-off between using a rela-
tively small amount of precisely (manually) annotated data and
a large amount of less precisely (automatically) annotated data.
Measures of confidence will be essential here to assess which
sections of a waveform are reliably annotated.
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