NOZOMI - A FAST, MEMORY-EFFICIENT STACK DECODER FOR LVCSR

Mike Schuster

ATR, Interpreting Telecommunications Research Lab.
2-2 Hikari-dai, Seika~cho, Soraku-gun, Kyoto 619-0288

gustl@itl.atr.co.jp

ABSTRACT

This paper describes some of the implementation details
of the “Nozomi” ' stack decoder for LVCSR. The decoder
was tested on a Japanese Newspaper Dictation Task us-
ing a 5000 word vocabulary. Using continuous density
acoustic models with 2000 and 3000 states trained on the
JNAS/ASJ corpora and a 3-gram LM trained on the RWC
text corpus, both models provided by the IPA group [7],
it was possible to reach more than 95% word accuracy on
the standard test set. With computationally cheap acous-
tic models we could achieve around 89% accuracy in nearly
realtime on a 300 Mhz Pentium II. Using a disk-based LM
the memory usage could be optimized to 4 MB in total.

1. INTRODUCTION

LVCSR is currently limited to workstations and fast high-
end laptops with a lot of memory. To make LVCSR work on
PDAs, cellular phones, user-interfaces, wrist watches etc.,
it is necessary find time- and memory-efficient algorithms.
The goal for implementation of any search engine must be
to minimize time and memory requirements as well as
the overall complexity of the system while maximizing
its flexibility using all available knowledge sources (pro-
nunciation dictionary, N-gram LM etc.) to search for the
desired output.

There are several approaches to decoding, which can be
distinguished by their basic search strategy: a) the time-
synchronous transttion network decoders and the usually
time-asynchronous stack decoders. Stack decoders [3, 5]
can be defined as decoders that use during decoding some
kind of a stack of partial sentence hypotheses each consist-
ing of a certain number of words. In general the partial hy-
potheses on a stack are expanded by complete words time-
synchronously using the pronunciation dictionary to create
new partial hypotheses which are inserted into other stacks.
When all stacks but the last (result stack) are empty, the
result stack will contain the first best hypothesis, the N-
best hypotheses or the respective lattices depending on the
search mode. Stack decoders operate at least on two levels
of search: a) the outer level, which loops over the stacks
(word-level search), and b) the inner level, which loops
over time and states to search for complete words, starting
from the end-time of the hypothesis to expand, which is

14Nozomi” is the name of the fastest, most comfortable and
most expensive bullet train in Japan, and also means “hope” in
Japanese

http://www.itl.atr.co.jp/

called state-level search or word-within search. Every time
a word-end is found during the time-synchronous word-
within search, its language model score is looked up using
the found word plus its history using the hypotheses which
are to be expanded. Because the dynamic LM score lookup
can take any word history into account, stack decoders can
easily make use of any kind of N-th order Markov language
model and also of non-Markov language models like link
grammars etc. Especially N-gram models of any order are
simple to implement, which is one of the major advantages
over the transition network decoders.

In this paper, based on a time-asynchronous stack de-
coder framework, it is shown how it is possible to handle
arbitrary order N-grams, how to generate N-best lists or
lattices next to the first best hypothesis at almost no com-
putational overhead, how to handle efficiently cross-word
acoustic models of any context order, how to efficiently con-
strain the search with word graphs or word pair grammars,
and how to use a fast match with delay to speed up the
search, all in one left-to-right search pass. The details of
a disk-based representation of an N-gram language model
are given, which make it possible to use LMs of arbitrary
(file) size in only a few hundred kB of memory.

2. A ONE-PASS STACK DECODER

The decoder described here is in its basic implementation
similar to the approach described in [5] and [6], which
should be consulted for the basic search strategy. Because
of space limitations this paper concentrates on the descrip-
tion of some of the decoder modules and issues, which were
found to be important for time- and memory-efficient per-
formance.

2.1. Stack module

The collection of stacks for each time ¢ are accessed by
PUSH() and POP() operations taking partial hypotheses
as arguments. Because they are used frequently and usu-
ally contain a few to several hundred entries in a typical
application, the stacks (or more precisely lists, because ac-
cess to their elements is random and not based on a LIFO
concept) have to be set up efficiently. The container types
used in other decoders are often special tree-structured
lists, which are ordered by score and limited in the number
of entries. Here a different method is described which was
found to be most efficient and simple to implement.
Pushing a hypothesis on a stack involves a check whether
a hypothesis being in the same LM state is already on that
stack. If yes, the scores of the two hypotheses are compared

and the better one is inserted into the stack, the other
one discarded. In case of an N-gram LM the LM state
check means to compare the last MAX(N — 1,1) history
word IDs. One word has to be compared as a minimum
to not violate the at least first order Markov assumption
for the complete speech model. Although checking for LM
state equivalence for N-gram LMs can theoretically be done
in O(1) using a hash table with the N — 1 words history
as the key, it was found that it is in practice not more
efficient than a simple non-ordered unlimited list that is
searched through linearly up to an average stack size of a
few hundred hypotheses. Pushing a hypothesis on a stack
can also improve the upper bound for the score at this
time, which has to be checked for. Popping a hypothesis
from a stack is an O(1) process, since it doesn’t matter in
what order the hypotheses in beam are extended for the
implementation described here.

2.1.1.

Stack decoders can easily generate lattices at little com-
putational overhead in the first pass by slightly modifying
the LM state check procedure. Instead of discarding the
worse hypothesis in case of LM state equivalence it can
be linked into the lattice. A pointer on the best arc back
has to be updated to not loose the best hypothesis for the
current LM state and future reference. Compared to the
generation of the first best hypothesis there is only little
overall increase in memory for the storage of the additional
arcs in the lattices (section 3.).

Lattice generation

2.1.2. N-best list generation

The hypotheses in an N-best list differ by at least one
word ID. This can directly be checked for by extending
the LM state check to the complete history instead just
the MAX(N — 1,1) history word IDs like necessary for
obtaining the first best hypothesis. It can be done either
exactly by checking each word, or approximately by using
a hash function for the history. A lattice within the N-best
list, referred to as N-best lattice, which includes all pos-
sible alignments and pronunciation variants for the same
word ID sequence in the possible paths taken backwards
from a lattice node, can be produced by merging hypothe-
ses instead of replacing them like discussed above for the
first-best lattices. Compared to the lattice generation this
procedure uses only little additional memory for the extra
nodes of the hypotheses, which are needed because of the
increased LM state space, and only little additional time.
Since for the generation of N-best lists only the LM state
check procedure was modified, they can be generated in
the first pass like lattices.

2.2. N-gram module

A efficient format for the LM was found to be the fol-
lowing: For a back-off N-gram store all n-grams with
n=12 ..., N in a table for each n. Each entry in a table
has a word-ID, its LM probability and back-off probabil-
ity, and a pointer to the beginning of the list of extension
word entries in the table holding the (n + 1)-grams. For
the table with the N-grams the pointers are not necessary,
since no higher order (N + 1)-grams are following. Each
part of an entry table holding a particular set of extension
words is ordered by its word-IDs to allow fast access using
a binary search. The number of a set of extension words

on any level n doesn’t have to be stored because it can be
calculated by subtracting the pointer (on level n — 1) on
the current set from the next pointer (also on level n — 1)
on the next set. If the next set on level n doesn’t happen
to have any extension words, indicated by a NULL pointer
on level n — 1, the next non-NULL pointer on level n — 1
has to be searched for, which is on average not more than
a few entries away.

The memory requirements for this N-gram representa-
tion are 8 bytes per entry for all {n < N}-grams, and
4 bytes for all N-grams, assuming 4-byte pointers, 2-byte
word IDs and 1-byte representations for the LM probability
and the back-off probability, uniformly distributed across
their log-scores, which was found to be a sufficient accuracy
to not cause any errors. Access time for this storage format
is of O(1) for the unigrams and of O((n—1)-log>(K)) for the
{n > 1}-grams using a binary search, with K being the av-
erage number of words following any n-gram entry. The av-
erage access time can be slightly improved by caching LM
states and their scores in a hash table for all {n > 1}-grams
that have been accessed before. This improves average ac-
cess time to O(1) for already used {n > 1}-grams, but
requires an additional check whether a certain LM state is
already in the hash table or not.

A disk-based representation of the N-gram can limit
memory requirements to a few hundred kB for N-grams
of any size [8]. The search for the N-gram scores on disk
during the search is of course very time-consuming and has
to be minimized using an efficient caching scheme. An ef-
ficient implementation was found to be the following: Un-
igrams are stored in memory and all {n > 1}-grams are
stored on disk in the exact same format that was used
for the representation in memory, such that looking up an
n-gram can be done using the same algorithm. A set of
extension words following an n-gram is loaded into tempo-
rary memory to run the binary search for the correct word
ID in memory and not on disk. The LM states that have
been used once are cached in a memory-based hash table
to minimize disk access.

2.3.

A procedure to deal with cross-word models of any order
(triphones, quintphones, etc.) incorporating cross-word ef-
fects in a delayed manner was found to be very efficient
in time and memory requirements, and is especially well
suited for a stack decoder:

Cross-word models

e Run the state-level search for any set of hypotheses
to expand with only word-internal context-dependent
models.

e When popping the hypotheses from a stack to expand,
realign the last M words using cross-word models at
the word boundaries before entering the state-level
search to find the extension words.

e Because cross-word effects are incorporated with a
one-word delay, it is also necessary to realign the last
M words for all hypotheses on the final result stack.

This procedure as illustrated in Fig. 1 incorporates all
cross-word effects within the last M words, and is opti-
mal for cross-word triphones with M = 2 for most cases
and possibly M = 3, if the word before the last word is

a one-phone word. To capture all cross-word effects with
quintphones theoretically M = 5 is necessary, if all words
in the dictionary would be one-phone words.

ﬁ TIME

=R
©
©)

STACK?OEXPAND

Figure 1. Visualization of the method to incorpo-
rate cross-word models of any context order. Cir-
cles denote hyp-nodes, filled circles are the word
boundaries that are corrected by the procedure
using cross-word models before the stack (box) is
expanded. In this example only two words are re-
aligned, but there could be more like discussed in
the text. The same procedure is used for the fast-
match.

The realignment for each hypothesis to extend is in detail
done as follows: Take the last M words and find the correct
(cross-word) HMMs for each phone at the word boundaries
which don’t already cover the maximum available context
given the acoustic model set. Use a local Viterbi search to
find M new acoustic scores and possibly M — 1 new word
boundaries. Generate M new arcs and M — 1 new hyp-
nodes and replace the old hypothesis end-hyp-node by the
new one.

The correct cross-word HMM model is defined as the
model which covers the most context around the current
center-phone. This definition is also used for finding the
correct context-dependent HMM within words during con-
struction of the tree lexicon containing context-dependent
models given only a monophone pronunciation dictionary.

Compared to the procedure described in [2], which lo-
cally rescores every word that is found during the state-
level search, the method described here rescores only words
that have been found to be considerably likely being part
of stacks to expand. The average number of hypotheses
to expand per frame is in general between five and one-
hundred and cross-word rescoring is only applied to those
few. This requires only very little temporary memory and
is fast, because of the low number of hypotheses and be-
cause of the fact, that most of the states to be evaluated
during rescoring for their observation likelihood are already
in cache.

A potential drawback of this method is, that because
cross-word effects are incorporated delayed, scores might
vary more during the lookahead, which might require larger
beams than if this delay wouldn’t be used.

2.4.

The method to handle arbitrary cross-word effects is easily
extended to allow an efficient acoustic fast-match with a
one-word delay, which in a similar form without delay is
described in [1, 4]. The basic idea of a fast-match in a stack
decoder is to use simple acoustic models to find possible
extension words, and rescore them locally with better, but
computationally more expensive models. This avoids the
use of expensive models for the initial state-level search
and can speed up the complete search.

Fast-match with delay

The fast-match procedure described here keeps the use of
the expensive models at a minimum and is almost identical
with the method to incorporate cross-word models. Instead
of using word-within context-dependent (CD) models for
the state-level search, simple monophones with a low num-
ber of mixtures or small neural-network based models are
used in a context-independent tree-lexicon, and the found
words are inserted in the corresponding stacks. Rescor-
ing of the last M words including all cross-word effects is
done later using the accurate, but expensive CD models,
but only when a stack is expanded, such that many of the
previously found words will be out of the beam. The dif-
ference to the cross-word procedure from section 2.3. is,
that all phones of the last M words have to be mapped
to their correct CD HMM model, and not only the ones
at the word boundaries. This can be interpreted as local
rescoring with a one-word delay, which limits the number
of necessary rescoring turns per frame to less than ten to
one-hundred for most applications, and requires very little
additional memory.

3. EXPERIMENTS

All experiments were conducted using the described one-
pass stack decoder for the recognition of read sentences
from a Japanese newspaper using a 5000 word pronun-
ciation dictionary with on average 1.5 pronunciations
per word. The acoustic models are gender-dependent
decision tree state-clustered Gaussian mixture models
trained on 20k sentences per gender from the ASJ and
JNAS database. Acoustic preprocessing is standard 12-
dimensional MFCCs plus log energy, with applied cepstrum
mean subtraction per sentence and first derivatives every
10 ms. A trigram LM was trained on around 45 million
words from the RWC corpus containing four years of news-
paper articles from the Mainichi Shinbun, a daily newspa-
per in Japan. The standard test data are the first ten sen-
tences from the speakers 006, 014, 017, 021, 026, 089, 102,
115, 122 from the JNAS database. All acoustic models,
initial language models and the pronunciation dictionary
were kindly provided by the IPA group, who also defined
the test set [7].

Tab. 3. shows the results, for which the search parame-
ter settings were optimized to reach a low word error rate.
The experiments of this task were run in two modes, a

MODEL MALE FEMALE | RTF
Kat/Kan | Kat/Kan
129 x 16 88.7/87.5 91.8/90.8 9
2000 x 16 | 95.2/93.3 | 96.9/95.2 22
3000 x 16 | 96.4/94.8 | 95.9/94.5 23
129 x 16 87.9/86.7 91.0/90.0 9
2000 x 16 | 94.4/92.6 | 96.1/94.4 | 22
3000 x 16 | 95.6/94.0 | 95.0/93.6 23
Table 1. Recognition results for high accuracy,

cleaned of errors that shouldn’t be counted in
Japanese (upper) and not cleaned (lower), for
Katakana (Kat) and Kanji (Kan) recognition mode.
Cross-word modeling was used.

Katakana mode, where all word-IDs and all transcriptions

are written only in Katakana, and in a Kanjt mode, where
all word IDs and transcriptions are written like they occur
in a newspaper. Best recognition results in Kanji recogni-
tion mode are 5.2% word error rate (WER) for the male
using 3000 state models and 4.8% WER for the female
speakers using 2000 state models, if the results are cleaned
from errors that shouldn’t be counted as errors in Japanese,
which can be classified into two types. Type I errors are due
to the fact that there are no spaces in a regular Japanese
text, which were artificially introduced to define words to
build a pronunciation dictionary and a LM. This leads to
ambiguous word definitions and many errors of the kind:
’a’ 'while’ — ‘awhile’. Also, in Japanese it is common and
correct to write many words with the exact same pronun-
ciation and meaning using different symbols, which occurs
in English only for numbers (Type II errors). The raw
outputs from the recognizer are about 15% relative (1%
absolute) worse, showing that these errors, which are spe-
cific to Japanese, shouldn’t be neglected. The Katakana
results, which hide misrecognition of homonyms occurring
in Japanese more frequently than for example in English,
overestimate the score of interest on average by about 1%
absolute.

Tab. 3. shows results for experiments that were run to
maximize decoding speed at a low (around 1%) search er-
ror and minimize memory requirements, with (a) a regular
memory-based trigram LM and (b) a disk-based LM. Al-
most realtime performance including all observation likeli-
hood calculations is possible with around 11% word error
rate using 10 MB of total memory. The disk-based LM
slows down the search by about a factor of three for the
monophones. The realtime factor and memory require-
ments for all results are for a 300 MHz Pentium II.

MODEL M F MEM | RTF
Kat | Kat | (MB)
129 x 16 87.0 | 90.2 10 1.3
2000 x 16 93.0 | 94.6 20 9
2000 x 16 (fast-match) | 93.0 | 94.6 20 7
129 x 16 87.0 | 90.2 4 3.9
2000 x 16 93.0 | 94.6 14 14

Table 2. Results for high speed and low memory,
with memory-based LM (upper) and disk-based
LM (lower), not cleaned of errors that shouldn’t be
counted as errors in Japanese. Cross-word models
were used. Fast-match models were 3-state mono-
phones with four mixtures each.

The results shown in Tab. 3. compare the time and mem-
ory requirements for generating the first best hypothesis
with the time for generating lattices or N-best lists in the
first pass. It can be seen that the more complicated LM
state check for the N-best lists creates only little overhead,
and is almost independent of the length of the N-best lists.

4. CONCLUSIONS

It can be concluded that a time-asynchronous stack de-
coder is a conceptually attractive framework for integrating
many often needed procedures for speech recognition tasks.
Although efficient in memory and faster than the decoder

SEARCH MODE RTF MEMORY
first best (absolute) 9 20 MB
first best 100% 100%
lattice 107% 106%
N-best list, N = 10 | 113% 100.4%
N-best list, N = 50 | 116% 100.4%
N-best list, N = 100 | 117% 100.5%

Table 3. Relative time and memory (as measured
by the UNIX top command) for several search
modes with beams leading to lattices of about 2500
arcs and 500 hyp-nodes, and an average N-best list
length of 90 hypotheses.

mentioned in [7] for the same task, it should be noted that
the speed of a time-asynchronous stack decoder like imple-
mented here is probably not optimal for the specific task of
generating a first-best hypothesis or a lattice from a feature
vector sequence, because the globally time-asynchronous
search over the state space results in the generation of
many (about 90%) later not expanded partial hypotheses.
This could be avoided by using a time-synchronous stack
decoder with multiple trees, which hasn’t been tried here.

5. ACKNOWLEDGMENTS

This work wouldn’t have been possible without the sup-
port from the IPA group [7]. Prof. Shikano from NAIST
pointed out the specific importance of cross-word modeling
for Japanese.

REFERENCES

[1] L.R. Bahl, P.V. de Souza, P.S. Gopalakrishnan, D. Na-
hamoo, M. Picheny, “A fast match for continuous speech
recognition using allophonic models”, in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Processing, pp. I-17 - 1-20,
1992.

[2] L.R. Bahl, P.V. de Souza, P.S. Gopalakrishnan, D. Na-
hamoo, M. Picheny, “Word lookahead scheme for cross-
word right context models in a stack decoder”, in Proc.
FEurospeech, pp. 851-854, Berlin, Germany, 1993.

[3] P.S. Gopalakrishnan, “A tree search strategy for large vo-
cabulary continuous speech recognition”, in Proc. IEEE Int.
Conf. Acoust., Speech, Signal Processing, pp. 572-575, 1995.

[4] P.S. Gopalakrishnan, L.R. Bahl, “Fast matching tech-
niques”, in Automatic Speech Recognition: Advanced Topics
Eds. Boston: Kluwer Academic Publishers, 1996.

[5] S. Renals and M. Hochberg, ”Decoder technology for con-
nectionist large vocabulary speech recognition”, Technical
Report CUED/ F-INFENG/ TR.186, Cambridge Univer-
sity, England, 1995.

[6] M. Schuster, ”Nozomi - a fast, memory efficient one-pass
stack decoder”, ASJ spring meeting 1997, pp. 155-156, Yoko-
hama, Japan, 1997.

[7] T. Kawahara, et al, ”Common platform of Japanese large
vocabulary continuous speech recognizer assessment — pro-
posal and initial results”, Proc. EALREW-98, pp. 117-122,
Tsukuba, Japan, 1998.

[8] M.K. Ravishankar, “Efficient Algorithms for Speech Recog-

nition”, Doctor Thesis, Technial Report CMU-CS-96-143,
Pittsburgh, USA, 1996.

