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ABSTRACT

This paper deals with the improvement of a noisy speech
enhancement system based on the fusion of auditory and visual
information. The system was presented in previous papers and
implemented in the context of vowel to vowel and vowel to
consonant transitions corrupted with white noise. Its principle
consists in an analysis-enhancement-synthesis process based on
a linear prediction (LLP) model of the signal: the LP filter is
enhanced thanks to associative tools that estimate LP cleaned
parameters from both noisy audio and visual information.

The detailed structure of the system is reminded and we focus
on the improvement that concerns precisely the associators:
basic neural networks (multi-layers perceptrons) are used
instead of linear regression. It is shown that in the context of
VCV transitions corrupted with white noise, neural networks
can improve the performances of the system in terms of
intelligibility gain, distance measures and classification tests.

1. INTRODUCTION

It has been shown that there exists a complementarity
between audition and vision for speech perception [9].
Thus, visual cues can compensate to a certain extent the
deficiency of the auditory ones [12]. This explains that
the fusion of auditory and visual information has met a
great success in several speech applications, principally
in speech recognition in noisy environments [1, 11].

We test here a slightly different idea, which is that the
visual input could allow to enhance the audio input
corrupted in acoustic noise. This idea has a theoretical
basis. Recent work by Driver and colleagues suggest that
the sensorial input in one modality can focus the
attention of another modality on a specific part of its
input. This has been demonstrated in [4] for visual-
proprioceptive-tactile interactions, and in [3] for audio-
visual interactions. In this last case, Driver presents
various experiments in which the coordination of spatial
attention across audition and vision enables the subjects
to select sights and sounds from a common source in a
selective listening task. These data suggest that audio-
visual interactions could comprise a module enabling to

perform what we propose to call “audio-visual scene
analysis”, in reference to the domain of “auditory scene
analysis” [2] which focuses a great deal of interest in the
field of audition.

In two previous papers [5, 6], we presented a new system
dedicated to telecommunications or man-machine
communication, in which we attempt to realize a first
technical implementation of the idea that the acoustic
signal of a given speaker could pop out in noise thanks
to the visual input. In these first works, the audiovisual
fusion/enhancement process was realized by a simple
linear associator obtained by linear regression between
noisy audiovisual data and clean audio data tuned from a
learning corpus. The system was tested on vowel to
vowel [5] and vowel to consonant (VCV) [6] single-
speaker sequences and a quite good intelligibility gain
was obtained on the vocalic parts of the signals, while
the results on consonants were mitigated. This lead us to
suspect the simplicity of the linear associator. In this
paper, we present an improvement of the system with the
use of non-linear associators for the fusion/estimation
process. Thus, basic neural networks (multi-layers
perceptrons) are used instead of the linear regression.
New results obtained with both informal listening tests
and objective measures (spectral distances, spectra
classification) are presented.

2. STRUCTURE DESIGN

The system is essentially based on the linear prediction
model (LP) [8] (fig. 1). First, an LP analysis is
performed on the noisy signal. We obtain spectral
parameters and the noisy speech residual signal is
extracted by filtering through the inverse LP filter A,(z).
Then, the noisy spectral parameters are combined with
the video ones into an audiovisual vector so as to obtain
estimated "cleaned" spectral parameters (see section 3).
Finally, enhanced speech is synthesized by filtering the
residual signal through the LP filter //A.(z) derived from
the "cleaned" parameters. The whole processing is
performed frame-by-frame in the perspective of a
continuous speech application.
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Figure 1: Structure of the noisy speech enhancement system

3. ASSOCIATORS

The estimation of the cleaned parameters is a classical
"trained association” problem. In our previous works,
linear regression was chosen for its simplicity and its
efficiency. Its principle is simply to estimate each audio
output parameter as a linear combination of the
audiovisual input parameters. The matrix M of the
coefficients of the linear combination are calculated by
minimizing the mean square error e=M;.M-M,, where
M; and M, are two matrix concatenating a large number
of sets of respectively input and corresponding output
parameters extracted from a training speech corpus.

Besides, neural networks have been widely used for
classification tasks, like in the field of speech
recognition, including recently audiovisual recognition
[11]. They are theoretically able to approximate any non-
linear function. That is why we choose to use them in
order to improve the audio-visual association accuracy by
enabling non-linearities between the input-output spaces.
The networks used in this work are classical multi-layers
perceptrons (MLP) based on error gradient
backpropagation [10]. They have one hidden layer and
the neuronal threshold functions are classical sigmoids.
The backpropagation algorithm applied on the learning
data is a very basic one, the only special tuning being the
"momentum" option: the adjustment of each weight takes
in account its previous modification during the training
iterations thanks to a forgetting coefficient.

4. EXPERIMENTATION

4.1. Video and audio inputs

Video stimuli consist in three basic geometric parameters
describing the speaker’s lip shape, namely internal width
(A), height (B) and area (S) of the labial contour. These
parameters are automatically extracted every 20 ms
thanks to the ICP face processing system [7].

Concerning the audio LP parameters, it has been shown
that the best performances of the system were obtained
with a 50-coefficient spectral representation consisting of
the logarithmic values of the //A(z) 20-order filter
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amplitude taken for 50 equally spaced values on the
upper-half unit circle. The audio signals are sampled at
16 kHz and the coefficients are calculated on 512
samples (32 ms, which involves an audio window
overlap of 12 ms to synchronize with the 20 ms video
period). To obtain the filter 1/A.(z) from the "cleaned”
spectral parameters, we process an inverse FFT on the
squared linearly-scaled coefficients, and apply a 20-order
Levinson procedure on the resulting estimated
autocorrelation coefficients [8]

4.2. The corpus

The corpus, already used in [6], consists in V;CV,CV;
sequences uttered by one speaker. V; and V, are within
[a,1,y, u]. C is within the plosives set [p,t, k, b, d, g].
One item of each of the 96 possible stimuli (4x4x6) is
used during the training of the associators and another
one is reserved for the tests described in section 5. With
a video acquisition period of 20 ms, we obtain an amount
of about 2500 audiovisual vectors for a series of 96
stimuli (about 25 frames by stimuli).

4.3. Experimental protocol

We consider only the case of an additive white noise. In
order to sufficiently generalize the process with respect
to the noise level, the training of the associators is done
with input audio corrupted at different levels. The results
discussed here are obtained with the use of two different
learning/processing conditions for both linear and
neuronal associators. In the first one, the stimuli frames
are presented at signal to noise ratios (SNRs) of oo, 18,
12, 6 and O dB. In the other one, the stimuli frames are
presented at SNRs of 6, 0, -6, -12, and -18 dB. During
the enhancement process, each frame is submitted to a
linear discriminant analysis in order to decide its
categorization in the “small” or “strong” noise condition
so that we can choose the corresponding associator. It
has been shown that this linear discriminant analysis
could separate stimuli with SNR lower than O dB or
higher than 6 dB with less than 1% errors. Between O
and 6 dB, the two “small/strong noise” associators
provide quite similar outputs.



5. EXPERIMENTAL RESULTS

5.1. Informal listening tests

In [5], it was observed that the linear associator allowed
a significant enhancement of vocalic transitions on a
large SNRs scale (from 18 to —18 dB). In [6], where the
VCV corpus was used, this efficiency was somehow
reported on the vocalic parts of the stimuli while all
consonants stayed poorly intelligible. New informal
listening tests using the MLP reveal that this associator
seems to allow a better global enhancement than the
linear associator at any level of noise: when listening
successively two occurences of a stimuli provided by both
associators, the one enhanced by the MLP is
systematically preferred. This seems to be due first to an
improvement of the enhancement of vocalic sections.
Besides, a significant improvement on consonants is
obtained for the [p, b] sections, showing that the non-
linear relation between closed lip shapes and acoustic
features can be exploited by the neural network.
Unfortunately, other consonants are not significantly
enhanced (even sometimes degraded, which was already
observed with the linear associator), showing anew the
difficulty to exploit poorly visible articulatory gestures.

5.2. Distance measures

The Itakura distance [8] has already been used in [5, 6]
to measure the difference between the enhanced and
clean spectra. Rather small distances were obtained
compared to those between noisy and clean spectra.
Hence, the procedure does produce a significant
enhancement and the new plot in figure 2 allows to
compare the results obtained with the linear associator
and the MLP for two values of the hidden layer neurons
number (40 and 200). The distances are calculated and
averaged on the complete test corpus (96 stimuli) for 8
different SNRs (oo, 18, 12, 0, -6, -12, -18 dB).

~&~linear reg.
~-#--- MLP 40

Mean Itakura Distance (dB)

18 -12 -6 0 6 12 18 clan

Figure 2: Mean Itakura distance between enhanced and clean
spectra of the test corpus for the linear regression and MLPs
with 40 and 200 neurons.

In each case, that is 40 or 200 neurons, the performances
of the MLP significantly overcome the linear associator
ones for strong levels of noise (until SNR = 6 dB). Below
0 dB, the results seem independent of the number of
neurons. This is confirmed by figure 3, which displays
the same distances as a function of the number N of
neurons of the hidden layer. At smaller levels of noise,
the gain gets smaller if N is small (it is even negative for
20 neurons at « or 18 dB). A quite larger number of
neurons seems necessary to obtain better results than the
linear regression at small levels of noise.
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Figure 3: Mean Itakura distance between enhanced and clean
spectra of the test corpus for the linear regression and MLPs as
a function of the number of neurons of the hidden layer.

As a summary, a relatively small number N of neurons
with respect to data size allows a quite more efficient
output estimation than the linear regression in terms of
spectral distances. This is obtained on a large noise level
scale (below 6/12 dB). As N increases, this gain of
performances is spread to small noise levels.

5.3. Gaussian classification test

To evaluate the system in a recognition task, gaussian
classification tests have been realized separately on the 4
vowels and the 6 consonants of our stimuli. The items
used in this test are two selected frames near each vocalic
nucleus of each stimulus for the vowels, and near each
burst for the consonants. For each level of noise, we
obtain 576 vowel and 384 consonant items (2 selected
frames, 3 vowels and 2 consonants occurrences per
stimulus, 96 stimuli), that is to say 144 per vowel, and 64
per consonant. Since the number of data is small
compared to the number of audio parameters, we reduce
it from 50 to 10 by means of a principal components
analysis (PCA). Both the PCA and the gaussian audio
classifier parameters are determined with learning data
presented at 3 levels of noise (o, 18, 12 dB). Figure 4
displays the classification scores obtained separately on
vowels and consonants for three conditions: noisy audio,
audio enhanced with the linear regression, and audio



enhanced with the MLP. In this last case, the number of
neurons is chosen not too great (120) while allowing the
best global scores. All scores are normalized between O
and 100%, with 0% corresponding to a random choice
and 100% to perfect recognition.

100

80

60 &
40 -

...... " B ¥ inear reg.
20 g /*/ Consonants
'f Iy SNR (dB
0 & i ""“M? } + %( ) i
-18 -12 -6 0 6 12 18 clean

Figure 4: Gaussian classification test scores

The difference of the scores in the noisy and enhanced
conditions confirms the efficiency of the system. The
gain of the MLP with respect to the linear associator is
anew notable. In particular, the network is able to clearly
improve the “reshaping” of the vowel spectra, while the
regression was shown to be already efficient in that case
[5, 6]. The scores obtained on consonants are less
impressive, even if a gain is also observed from linear
regression to the MLP. All these results confirm the
observations of section 5.1.

6. CONCLUSION

We have presented in this paper the improvement of an
original noisy speech enhancement system introduced in
[5]. This system is based on a filtering process
exploiting some fusion/estimation process from both
auditory information and lip contour parameters. The
improvement concerns the use of neural networks
(multi-layer perceptrons) for the fusion/estimation
process, instead of linear regression which was used in
[5] to show the feasability of the study.

It has been shown that in the context of VCV transitions
corrupted with white noise, neural networks can improve
the performances of the system in terms of intelligibility
gain, distances measures and classification tests. The
gains observed on consonants are mitigated: only the [p
b] lip closures seem to be exploited correctly, which is a
new (even not to much surprising) result compared to
previous one obtained with the linear associator. Hence,
the improvement of consonants stays the key-point of
this work. The good surprise comes from the vowels:
their enhancement is significantly improved by the MLP
although the performances of the linear regression for
the vowels were already quite good.

To compare with [5], formal perceptive tests remains to
be done. This is part of our future works, as much as the
association of such audiovisual methods with classical
acoustic ones (e.g. multi-microphones systems).
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