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ABSTRACT

A duration modeling scheme and a speaking rate compensa-
tion technique are presented for the HMM based connected
digit recognizer. The proposed duration modeling technique
uses a cumulative duration probability. The cumulative du-
ration probability also can be used to obtain the duration
bounds for the bounded duration modeling. One of the ad-
vantages of proposed technique is that the cumulative du-
ration probability can be applied directly to the Viterbi de-
coding procedure without additional postprocessing. There-
fore, it rules the state and word transition at each frame. To
alleviate the problems due to fast or slow speech, a modi-
fication to the bounded duration modeling which accounts
for speaking rate is described. The experimental results on
Korean connected digit recognition show the effectiveness
of the proposed duration modeling scheme and the speaking
rate compensation technique.

1. INTRODUCTION

In connected digit recognition task, the inserted words are
observed for unrealistically short durations, while the previ-
ous or next word of the deleted words is observed for abnor-
mally long durations. Such misalignments of word duration
sequences can be reduced by modeling of the state and word
durations. Speech rate is another problem in connected digit
recognition task. It has been known to have a significant ef-
fect on recognition [1]. Furthermore, the duration modeling
technique cannot play a proper role when the input speech
is too fast or too slow.

Several approaches have been proposed to model the
state and word durations explicitly or implicitly. In ex-
plicit duration modeling, the duration probabilities are mea-
sured from the training data or several distribution densi-
ties, which are usually incorporated in postprocessing as the
weights of multiple candidates [2][3]; Parametric distribu-
tion [4][5] using Gaussian, Poisson or Gamma density has
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been suggested to model the state and word durations. In
the bounded state duration modeling [6] the state duration
is lower and upper bounded by two bounding parameters in
the recognition phase.

Another approach to treat the duration problem is to
model the state duration implicitly such as the Ferguson
model [7], the expanded state HMM [8][9], the second-
order HMM [10] and the inhomogeneous HMM (IHMM)
[11].

In this paper, we propose a method using the cumula-
tive duration probabilities to model the state and word dura-
tions explicitly and a speaking rate compensation technique.
The cumulative duration probability is measured by the par-
tial sum of the conventional explicit duration probabilities.
Therefore, we call it “cumulative duration probability” in
this paper.

The proposed duration modeling technique is described
in section 2. In section 3 the modification to duration mod-
eling which reduces the effect of speech rate is presented.
The experimental settings and results are described in sec-
tion 4.

2. DURATION MODELING USING CUMULATIVE
DURATION PROBABILITY

2.1. Cumulative Duration Probability

In explicit duration modeling, the probability P (w,i,7)
which denotes a discrete distribution of the state duration
in state ¢ of word w for 7 frames is defined as the following:

P, (w,i,7) = Pr[s; = (w, {) for r frames|s; = 4, s¢41 # ],

o, (D
> Pi(w,i,7) = 1, (2)
=1

where, D, is the largest state duration allowed. Since it
should be added at the end of a state or a word, it can-
not be applied to the Viterbi decoding procedure. Thus an
additional postprocessor is needed. This implies that the
state and word durations do not play a role in the forward



recognition path and that they do not rule the state and word
transition at each frame. To overcome such problems we
propose a method using the cumulative duration probability
that can be combined directly to the Viterbi decoding pro-
cedure.

The cumulative state duration probability P, (w,4,7) is
defined by

P,(w,i,7) = Pr[sty1 = 8¢ = (w, 1) for 7 frames]. (3)

It is measured as the following:

P;(w,i,7) = Pr[transition accurs after 7 frames]  (4)
D
= > Pi(w,id). (5)
d=1+1

It is the partial sum of the explicit duration probabilities
which can be calculated from the training speech data or
estimated from the several parametric distributions. The
cumulative word duration probability P(w,7) is obtained
from the same way as we mentioned before.

The Viterbi decoding algorithm is modified to utilize
both the cumulative state and word duration probabilities.
When only two state transition paths are considered for con-
venience, a modified Viterbi decoding algorithm within a
word is given by

6t (wa 7') =

max[6;—1(w, i) - a
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where, d;(w, ) is the Viterbi score in state ¢ of word w at

time ¢, a;’; denotes the state transition probability from state

i to state j of word w, b (O;) is the observation probability

in state ¢ of word w at time ¢, and 7; and 7, represent the

duration in state ¢ and in word w, respectively. For the first
state of each word where the word transition is considered,

a modified Viterbi decoding algorithm is of the form:
6t (wa 1) =
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where, W denotes the total number of words, /N is the num-
ber of states in word w and ay; - ; represents the transition
probability from the last state N to the virtual state N + 1,
which means the word transition occurs.

2.2. Bounded Duration Model

The cumulative state and word duration probabilities can be
used to estimate the lower and upper bounds for the bounded

duration modeling. The cumulative duration probability is a
monotonically decreasing probability. Therefore, the lower
and upper bounds are easily estimated by applying proper
thresholds. Let DL, (w, ) and DU, (w, %) be the lower and
upper duration bounds for state ¢ of word w, and DL,,(w)
and DU,,(w) be the lower and upper duration bounds for
word w. They are estimated by applying the thresholds
THgy, THsy, THy 1, and T Hyy iy to the state and word
cumulative duration probabilities, where T'Hgy, and T Hgys
denote the lower and upper thresholds for the state duration
bounds, T'Hyy 1, and T Hyy iy represent the lower and upper
thresholds for the word duration bounds, respectively.

3. SPEAKING RATE COMPENSATION

In this section, we present a speaking rate compensation
technique for the bounded duration modeling. The proposed
technique performs the recognition process twice. From the
recognition results obtained in the first recognition process,
the speaking rate is estimated. Then, the lower and up-
per duration bounds are adjusted to the speed of the input
speech and the second recognition process is performed.

The average duration of each word D(w) and the av-
erage duration of the total words D are estimated from the
training data.

D,
D(w) = Py(w,r)-7, 1<w<W, (8)
T=1
_ 1 X
D = > D(w). )
w=1
The duration rate of each word D R(w) is defined by
D
DR(w) = #. (10)

The value of DR(w) is greater than 1 for long words and
less than 1 for short words. Using the duration D(w) of
each recognized word in the first recognition process, the
expected average duration D of the input speech and the
expected duration ﬁ(w) of each word is estimated as the
following:

D = Median[D(w)/DR(w)],
w € {recognized words},  (11)
Dw) = D-DR(w), 1<w<W, (12)

where, Median[-] denotes the Median average. We use the
Median average, rather than normal average, so that the ex-
pected average duration D is not affected by wrong words
which usually appear for abnormally long or short frames.
For the second recognition process, we choose narrower du-
ration bounds than those for the first recognition process.



These duration bounds D L4 (w, i), DU (w, ), D L, (w) and
DU, (w) are adjusted using the expected duration D(w) of
each word.

DLy(w,i) = DL,(w,i) + (D(w) — D(w))/N, (13)
DU,(w,i) = DU,(w,) + (D(w) — D(w))/N, (14)
DL, (w) = DLy(w)+ (D(w) — D(w)), (15)
DU,(w) = DU, (w)+ (D(w) — D(w)), (16)

Then, the second recognition process is performed with the
adjusted duration bounds DL (w, i), DUs(w, @), DLy, (w)
and DU,,(w) which account for the speaking rate.

4. EXPERIMENTAL SETTINGS AND RESULTS

The experiments on Korean connected digit recognition was
performed using the DigitDB! database which consists of
5,169 connected digit strings from 70 males and 50 females.
The data was partitioned into 4,064 strings from 50 males
and 40 females for training, and 1,105 strings from 20 males
and 10 females for testing. The vocabulary was made up of
30 models; 29 models for 11 digits (the digit “0” is read
in two ways in Korean) and 1 model for the silence. The
29 digit models were designed to cover the coarticulation
effects due to previous and next digits. The transitions be-
tween the 29 digit models were ruled by the word pair gram-
mar.

The speech signals were down-sampled from 16 KHz to
8 KHz and pre-emphasized by a factor of 0.95. Three fea-
ture vectors, 12 mel-frequency cepstral coefficients (MFCC),
12 delta MFCC, and delta energy with delta-delta energy
were computed every 10 ms using a 20 ms Hamming win-
dow. The band pass lifter (BPL) was used in cepstral dis-
tance measure.

An example of the cumulative duration probability and
the duration bounds obtained from it is shown in Figure 1.
The cumulative state and word duration probabilities rep-
resent the continuity of corresponding state and word. In
figure 1 the value of the cumulative duration probability is
almost 1 for a low duration period, which makes a state and
a word remain as they are. It decreases gradually and for a
high duration period it is close to 0, which encourages the
state and word transitions.

Several duration modeling schemes using the cumula-
tive state and word duration probabilities and a speaking
rate compensation technique were examined. The experi-
mental results are shown in Table 1. In Table 1, BD1 de-
notes the bounded duration modeling with only one set of
state and word duration bounds for all states and words. BD
means the bounded duration modeling in which the duration

IThe DigitDB database has been distributed by the Korea Advanced
Institute of Science and Technology (KAIST).
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Figure 1: An example of the state and word duration model-
ings: (a) the state duration of the 2nd state of the word ““/i/”
(2), (b) the word duration of the word *“/gong/” (0)

bounds are obtained from the cumulative duration probabil-
ities. CD represents that the cumulative state and word du-
ration probabilities are applied to the Viterbi decoding pro-
cedure. CD+BD is the combined scheme of BD and CD.
CD- A means that the state transition matrix A of HMM is
not used in CD. CD+BD- A denotes that BD is added to CD-
A. BD+SRC represents that the speaking rate compensation
technique is applied to BD scheme. In BD+SRC scheme,
the threshold probabilities for the duration bounds in the
first recognition process were T Hgy, = 0.95, THgy =
0.001,THy 1, = 0.93and T Hyyy = 0.001. For the second
recognition process, they were THgy, = 0.95, THgy =
0.005, THw 1, = 0.8 and T Hyyy = 0.01.

The recognition results in Table 1 show that the pro-
posed duration modeling techniques increase the recogni-
tion accuracy approximately by 9.5% compared to that of
the conventional HMM, and approximately by 3.4% com-



Table 1: Experimental results for several duration modeling
schemes using the cumulative duration probability and the
speaking rate compensation technique

Duration Recognition | Number of errors
modeling || accuracy[%] | Ins | Del | Sub
Baseline 83.60 354 | 64 | 228
BD1 89.76 99 | 164 | 319
BD 93.47 83 | 98 | 190
CD 93.10 73 | 101 | 218
CD+BD 93.01 67 | 107 | 223
CD-A 93.12 103 | 79 | 209
CD+BD-A 93.07 94 | 84 | 216
BD+SRC 94.28 51 | 8 | 189

pared to that of the BD1 scheme. Among the proposed dura-
tion modeling schemes, the best performance was achieved
by the BD. In the BD, several sets of thresholds proba-
bilities were used to measure the duration bounds and we
carefully tuned them, while one set of thresholds THgy, =
095, THSU = 0001, THWL = 0.93 and THWU =
0.001 were used in other BD schemes. Although such a
special tuning was not conducted in the proposed speak-
ing rate compensation technique (BD+SRC), the BD+SRC
technique achieved the 0.8% of further improvement com-
pared to the BD scheme.

5. CONCLUSION

We have presented a duration modeling using a cumula-
tive duration probability and a speaking rate compensation
technique. Since the proposed duration modeling scheme is
combined to the Viterbi decoding procedure, an additional
postprocessor is not needed. The speaking rate compensa-
tion technique is applied to the bounded duration modeling
and it reduces the errors due to fast or slow speech.

From the experimental results for the duration model-
ings, we can note two facts. First, when the cumulative du-
ration probability is combined to the Viterbi decoding pro-
cedure, an additional duration modeling such as the bounded
duration modeling cannot achieve further enhancement of
recognition accuracy. Second, the performance of the du-
ration modeling using the cumulative duration probability
is better when the state transition matrix A of HMM is not
applied.
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