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ABSTRACT

We present a novel approach to Automatic [anguage
Identification (LID).  We propose Perceptually Guided
Training (PGT), a novel LID training method, involving
identification of uttcrance parts which are particularly
significant perceptually for the language identification process,
and exploitation of these Perceptually Significant Regions
(PSRs) to guide the LID training process. Qur approach
involves a Recurrent Neural Network (RNN) as the main
mcechanism. We propose that, because of the long-range intra-
utlerance acoustical context significance in LID, RNNs are
particularly suitable for the L.ID task. Our approach does not
require phonetic labeling or transcription of the training corpus.
LIREN/PGT, the LID system we developed, incorporates our
approach. Our LID experiments were on English, German, and
Mandarin Chinese, using the OGI-TS corpus.

1. INTRODUCTION

Automatic Language Identification (1.ID) is the task of

identifying the natural language used in a monolingual speech
excerpt, in a speaker-independent manner. Approaches to LID
include (e.g., [9]) those based on HMMSs, VQ and histograms,
phonotactics, prosody, as well as techniques utilizing Large
Vocabulary Continuous Speech Recognition (I.VCSR), and
feedforward (MLP) neural networks. We are concerned with
the essential LID task, the term we use for the LID capability
that does not rely on speech recognition capabilities at the
word-level and above.
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We present a novel approach essential  LID.
propose, involves identification of utterance parts which are
particularly  significant perceptually for the language
identification process. and exploitation of these Perceptually
Significant Regions (PSRs) to guide the training process.
Thus, exploitation of the non-uniform distribution of informa-
tion specific to the language identification process, locating the
utterance portions where the levels of such information are
elevated (PSRs), and utilizing them to improve the LID
training process, are the underlving concepts of the PGT. Our
approach involves the Recurrent Neural Network (RNN)
architecture as the fundamental LI mechanism [1,3]. We
believe that the long-term intra-utterance context plays a major
role in the essential LID. The inclusion of this context is our

principal motivation for the RNN-based approach. Our

approach does not require phonetic labeling or transcription of

the speech corpus. The devclopmental and experimental
aspects of our research include a system implementing our
approach, LIREN/PGT (Language Identification with

REcurrent Neural networks and Perceptually Guided
Training). The LID training experiments with LIREN/PGT
show the efficacy of our approach. Our research includes
investigations of a number of issues in RNN LID training, and
proposes a number of algorithmic solutions for the RNN train-
ing for LID. Our LID experiments were on English, German,
and Mandarin Chinese, using the OGI-TS [5] speech corpus.

2. RNN-BASED APPROACH

We suggest that the acoustical context range is particularly
extensive and important in LID (compared to, e.g., a phonetic
recognition task). We propose that the implicit inclusion of the
past, inherent in RNNs due to their feedback connections, can
account for that context, making RNNs particularly suitable for
LID. Regarding the type of input, although LIREN/PGT has
provisions for possible future experiments with speech units (in
particular the automatically derived fenonic units |3]) its
baseline form relies on the acoustic domain feature vectors.
The principal reason for this is the desire to deliver to the RNN
main engine the maximum of the information available in the
signal. A conversion of the acoustic domain features into
speech units simplifies the network subsequent operation (a
simpler classification problem), but it filters the information,
narrowing its scope to the chosen speech unit domain. In the
absence of the fundamental understanding of the essential LI
process, we chose to attempt the RNN recognition using all
available information, i.e., the acoustic feature vectors, in spite
of the difficulty issue (feature space dimensionality). Our
results show that, with appropriate algorithmic provisions, such
LID training can be successful.

The global architecture of the LIREN/PGT system is shown in
Figure 1. The preparatory stages (B), aided by auxiliary
utilities (F) generate the speech data repository contents in the
“LIREN/PGT native” form. The VideVox facility [2] (C) is
responsible for supplying the PGl information (discussed later)
that, together with the corresponding speech waveform data
constitutes the LIREN/PGT main speech data repository (D).
The feature generation stages (E) produce the feature vector
sets (G), the input to the RNN engine. The LIREN/PGT
system was developed in C and MS Visual C++ ver. 5.0, on a
WindowsN'T, 200 MHz Pentium Pro system with 64MB RAM.

Recurrent Architectures in LIREN/PGT. Two related RNN
architectures have been used in LIREN/PGT. The first, a fully
interconnected two-layer recurrent architecture, is shown in
Figure 2a. This diagrammatic representation does not show the
multitude of nodes and connections. The output of each node
in layer 1.1 connects to each node of layer 1.2 ((A) is a fully
connected bipartite graph). State input nodes receive their
inputs through the delay stage from the state output nodes in



layer L2. The external output nodes deliver the language
probability (one node per language). The number of state
nodes impacts the degree of context inclusion by the network.
In this work the number of state nodes was often about 160.
With 21 input nodes, a bias node and two external output
nodes the network contains a total of 344 nodes, and 118336
weight connections. Neural networks of such size present
serious challenges in development and training (tunhu
exacerbated by the delay /z”'/ loops which, during training, turn
the network into a large multilayer structure, replicating in
time the above spatial view). The second neural network
architecture in LIRIN/PG I shown in I 1mln- 7h 1s RTRI, fg]
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The L1 nodes consist of b1as and input nodes, and are fully
interconnected to laver L2 via the connection structure (A).
Thus (A) contains (b t i)fr—t) links, where b, i, r, and ¢, are the
number of bias, input, RTRL and target nodes, respectively.
AN mndac 10 lavar T aen alan sanmantad theangh tha dalaes
Al ITUUC) 1 luyc1 L4 alT aldvy vulllicuvivu l,lLlUuE.ll UlT Jelay
stage (z7) to all nodes of L2. Thus the feedback loop involves
a fully interconnected set of links (B, C). As in the previous

case, our diagrammatic representation hides the huge size of

the network (Figure 2b does not show explicitly the multitude

Ul nodes and L()ﬂllbbll()lb)

Target functions. In LID, the RNN target function definition
issue 1s not trivial. While the input behavior (speech) 15 quite
dynamic, the output (language) remains static upon the change
of speakers, their speaking styvle or gender, and changes only at
those utterance boundaries where the two utterances, adjacent
in the training data stream, belong to different languages. In
{1.3].
LIREN/PGT: the piece-wise constant, the exponential rise, and

the linear 61771; hnlf models.

proposed, smoothens the training process by mlroducmg
overlaps in language probabilities during the {irst half of each
utterance: while the true-language target vector component
increases, the components (probabilities) for other languages
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point of the utterance, and the target components remain
constant across utterances, until a language change occurs, at
which point the process repeats. The tuzzy overlap effect starts
only on those utterance boundaries on which the language
actually changes; other boundarics have no effect (regardiess
of, e.g., speaker or specch mode changes between utterances).
The “fuzzy half” target function resulted in the best
performance.

Acoustic Signal Processing. LIREN/PGT includes three tvpes
of acoustical processing front-end subsystems. for a comparison
of different feature vector types' etficacy in RNN LID. In the
spectral domain based feature vector subsystem, similar to [6],
short term Fourier analysis (IFF'T) is performed, and the power

snectrum is divided into twenty mel-scale hing

pectrum is divided into twenty mel-scale bins.
twenty spectral energy coeflicients and the signal energy form
an R“" feature vector space. In the cepstral domain-based
Jeature vector subsystem, the 16th order LPC based cepstral
coefficients and, as in [6], the fundamental frequency estimate
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RASTA-PLP based feature vector subsystem, the 8th order
RASTA-PLP [4] coefficients and the signal power form an R
feature vector space. Our experiments, comparing [ID

rosunil
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we have described three target function models of

performance of thesc three feature vector types, did not show
major performance differences between the lower-dimensional
(9DD) RASTA-PLP feature vectors and substantially higher-
dimensional (c.g., 21D) spectral or cepstral feature vectors.
These results indicate that RASTA-PLP based features are
particularly suitable for LID.
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Figure 1: LIREN/PGT global architecture
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Figure 2: LIREN/PGT recurrent neural network architectures

3. PERCEPTUALLY GUIDED TRAINING
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Perceptually Guided Training (PGT), a novel method for LID
training, is a key componeni of our overali approach.
Perceptual experiments indicate |3] that humans notice certain
specitic utterance parts when listening to an unknown
language. We propose that language-identitv-specific



information, is distributed in a non-uniform fashion along the
utterance, and that human listeners are able to spol the
locations within the utterance where the levels of such
information are elevated. We do not know what aspects of the
total information present in the speech signal actually
constitute  the  language-identity-specific  information.
However, we propose that the location of utterance portions
that are “characteristic” for human listeners, can be determined
experimentally, and that these regions exhibit elevated levels
of the language-identity-specitic intormation. In PGT, we
perform the detection of such regions and, using the detection
results, we

subseauently
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cmphasize these parts of the training data (utterances) that are
particularly language-identity-signiticant perceptually.

3.1 PSR Identification

We use VideVox, a dedicated facility we developed [2], t

identify regions within the utterance that appear to listencrs as
particularly characteristic of the language used in the given
utterance. The data obtained in this process represent what we
termed as the Perceptually \10n1f111p1l Regions /PQR) delined
as the regions v\here the dulSlt_v of language 1dcnt1t) -specific
information is particularly high [3]. The PSR boundaries are
not required to be precise and are described probabilistically.
We do not constrain PSRs in any way, ¢.g., we do not impose

anv accllmnhnne or constrainte on their dlur AATe
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PSR identification 1s accomplished throui_h perccptual
L,\pcumCi‘lts in which human \ul)_]t.u.b interact with VideVox.
During the experiment session, VideVox is used [2] to present
the utterances in different languages to the subject. VideVox
tacilities {2], designed specifically for the PSR identification
task, allow subjects to identify and designate PSRs. We
performed perceptual experiments to elicit the PSR data for
Iinglish, German, and Mandarin Chinese (subjects interacted
with VideVox, using its facilities to identify PSRs). Our
experiments indicate that the PSR detection is possible. The
subjects had no difficulty in identifying “characteristic™ regions
for the languages they did not know. The overiaps between the
areas identified by the subjects indicate the existence of PSRs
common to different listeners. In addition, we observed the
following trends during the PSR identification. For English,
the PSRs often included phrases containing /th/, /db/, /t/, “the™,
fib/, and vocal pauses filled with /ae/, /a/. Yor German, PSRs
often included phrases containing ich, ich-bin, auf, che (as in

kuche) ro (as in buero) ein die oen (as in cecancen) den or
gucne), ro (@s 1n puero), ewn, die, gen (as n gegangen) den Of

ten (as in arbeiten), and “stra” (as in strasse). For Mandarin
Chinese, PSRs often included rapid successions of syllables
generally starting with the Mandarin Chinese phones similar to
Iv/, fch/, and /sh/. However, while the above trends appeared
l\l l\-«lJrCSCIII. u\pcutabl\. puuucu»a“w Or 1cutcu paucum \L. 5 IIL}‘III
in English), others were relatively unexpected (e.g., “ro” for
German). It should be emphasized that, while the above
phonetic sequences were observed in PSRs, the actual PSRs
that contained them were typically much fonger in duration,
and thus should not be considered as chiefly due to, or
reducible to, these phonetic sequences. We believe that PSRs
arise from effects that are nor restricted only to the phonetic

domain and_that they include long-range (beyond phonetic
level) phenomena. - -

Based on our experiments, it appeared that in 10-sec.
utterances (OGI-TS) the subjects could identify up to four
PSRs. After that, the efficiency dropped off v151bl_\ and the
subjects were likely 1o “fix” on a specific short interval within
the utterance. If confirmed, this phenomenon may also be
related to our procedure, e.g., the repetitive listening to the

antire uttarance (allowed by VideVaov) to which subiecte often
Snure ytterance (andéwed oy YIACVoX ), ¢ Wallh Subjects oiten

resorted after concluding the identification of a PSR.
Regarding the utterance duration, the PSR identification

appeared to be easier in longer utterances (story-bt), than in
short (10 sec.) ones.

3.2 PSR re-exposure algorithm

We developed two techniques by which the PGT makes use of
the PSR data during the necural network training. The first

technique. the tareet ﬁln/-hnn nrnf‘l.no aleorithm
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dynamic modlﬁcatlon of the targel tunction at the PSR
locations, reinforcing the correct language target function
vector component at those locations. The second technique, the
PSR re-exposure algorithm, proved to perform better of the
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controlled and automatic increase of the neural network’s
exposure during training to the language-identity-specific
information contained in the PSRs. Each PSR is presented (re-
exposed) to the network » times in each training epoch (» is an
adjustable re-exposure factor).

involves a

When LIREN/PGT operates in
the PSR re-exposure training mode, the feature vector stream
processing includes the detection of the PSRs’ presence. The
boundaries of each PSR are determined and the PSR is in effect
replicated from the training viewpoint. Thus the influence of
the PSR areas on the training process is reinforced » times.
The PGT intensity [3] is proportional to ». Our experiments
showed that »=8 was a good operating point for the algorithm.
This operating point appeared to be essentially independent of
the PSR duration and specifics.

We performed a large number of experiments to determine the
eflicacy of the PGT method. The English/German experiments
were particularly interesting, given the linguistic proximity of
the two languages. Our experiments showed a consistent
qirmsars et Af tla DT teniming maclmsmonsn svare o nan DOV
Dl.llJCllUl ll'\ vl ui 1\uJi1 lellllllé ycuuuuauw:. vUyLlL a 1lulImr\iji

training, with an improvement of about 9%.
4. RNN TRAINING IN LID

4.1 Backpropagation Through Time

Backpropagation Through Time (BTT) [7] was one of two
training modes used in this work. We used the adaptive weight
update algorithm [6]. Our initial LID experiments with it

chawiod canvargonsa difficnltias attrihntad to tha diffenlty of
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the LID task directly based on acoustic features. Among the
modifications we introduced in BT to achieve training
convergence, the step size range restriction, and the avoidance
of near-zero gradient operations, were found most effective [1].
Limiting the step sizes (in each weight space dimension) to a



band of four orders of magnitude of the imtial step size helped
prevent step size drifting. When the weight update decision
(gradient sign test [6]) originated from near-zero values, i.e..
the local gradient |&(t)'wy| was below a low-value threshold,
the corresponding weight update was withheld.  This had a
stabilizing effect on the training process.

Number of state nodes. The ability of the RNN to account for
the context (past) is influenced by the number of state nodes.
We studied the effect of the number of state nodes on the 1.ID
training. RNNs with 75 nodes in the state layers pertormed
acceptably well.  Our best results involved 120 to 160 state
nodes; we used 160 state nodes in many of our experiments.

BTT sequence extent. The BT'T sequence (expansion) length
18 the extent of the explicit context inclusion in BT1T. We
experimented with two types of context interval: a sclectable
fixed length, and a variable length equal to the length of
utterance. The fixed BT sequence lengths below (0.3 utterance
length performed relatively poorly, reflecting an insufficient
context inclusion level. A more complex, variable sequence
length approach performed better, while the best performance
was attained with fixed sequence lengths in the range of 0.3 to
0.9 utterance lengths.

4.2 Aperiodic Update Recurrent Training

The second training algorithm in LIREN/PGT is the Aperiodic
Update Recurrent Training (AURT) algorithm we developed.
AURT is in essence a modified Williams-Zipser RTRL
algorithm {8]. The AURT method is based on the specific
character of the LID task: the input feature vectors are naturally
grouped by utterances. Considering this, and the possibilities of
changes (speaker, speech characteristics, or language) from one
utterance to another, we tie the reset of the RTRL impact
coefficients (representing the influence of any weight on the
output of any node) to the utterance endpoints. Thus, unlike in
RTRI., the impact matrix reset mechanism in our method is
aperiodic, since it is dependent on the (variable) utterance
lengths. In AURT, both the aperiodic resct ol the impact
matrix, and the weights update process take place at those
points. We performed a multitude of LII) training experiments,
on English, German and Mandarin Chinese, with and without
PGT, to determine the efficacy of AURT. The non-PG'T AURT
training typically exhibited a convergent but slow learning
behavior. The PGT non-AURT experiments often exhibited
rapid learning, especially in the initial phases. However, not
infrequently, we observed a major instability developing later
on, followed by divergence. On the other hand, the PGT
AURT, under the same conditions, offered instability-free
convergence. Based on these experiments, we conclude that
the main advantage of thc AURT algorithm is its stability,
while preserving an acceptable leaming progress rate.

5. SUMMARY

We have described a novel approach to Automatic TLanguage
Identification (LID), involving Perceptually Guided Training
(PGT) and Recurrent Neural Networks. PGT is based on
locating and utilizing Perceptually Significant Regions (PSRs),
the utlerance regions that are particularly significant

perceptually for the language identification process. We
demonstratéd that PGT improves the LID training performance,
with consistent improvements of around 9% versus the non-
PGT mode. We suggested that intra-utterance acoustical
context is particularly critical (and extensive) in LID. We
proposed Recurrent Neural Networks as the central
identification architecture, motivated by a capability of an
implicit inclusion of that context via the feedback mechanism
of the RNN. Our approach does not require phonetic labeling
or transcription of the training data. We proposed several
algorithmic directions for RNN training in LID. These include
the Aperiodic Update Recurrent Training (AURT), and LID-
related modifications to the Backpropagation Through Time.
We have shown experimentally the convergence and the
feasibility of RNN training for L.ID, when the algorithmic
solutions we have proposed are emploved. The LIREN/PGT
system we have developed implements our approach to LID.
Experimental aspects included LID experiments with English,
German, and Mandarin Chinese, using the OGI-TS speech
corpus. The results of our experiments demonstrate the
promise of Perceptually Guided Training, and Recurrent
Neural Networks, for Automatic Language Identification.
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