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ABSTRACT 

We present a novel approach to Automatic I.anguagc 
Identification (IJD). We propose Perceptuallv Guided 
7’raining (PGT). a novel I.111 training method, involving 
identification of utterance parts which are particularly 
significant perceptually for the language identification process, 
and exploitation of these Perceptually Sign@ant Regions 
(PSRs) to guide the LID training process. Our approach 
involves a Recurrent Neural N&work (RNN) as the main 
mechanism. WC propose that. because of the long-range intra- 
utterance acoustical context significance in LID, RNNs are 
particularly suitable for the l.ID task. Our approach does not 
require phonetic labeling or transcription of the training corpus. 
IJREN/PGT, the LID system we developed, incorporates our 
approach. Our IJD experiments were on English, German, and 
Mandarin Chinese, using the OGI-TS corpus. 

1. INTRODUCTION 

Automatic Language Identification (I.ll>) is the task ol 
identifying the natural language used in a monolingual speech 
excerpt, in a speaker-independent manner. Approaches to LID 
include (e.g., 191) those based on HMMs; VQ and histograms, 
phonotactics, prosody, as well as techniques utilizing Large 
Vocabulary Continuous Speech Recognition (I.VCSR), and 
feedforward (MLP) neural networks. We are concerned with 
the essentiul LID task, the term we use fbr the l.ID capability 
that does not rely on speech recognition capabilities at the 
chord-level and above. 

WC present a novel approach to the essential LlD. 
PerceptualI& Guided Training (p(i7j. a novel paradigm we 
propose, involves identification of utterance parts which are 
particularly significant perceptually for the language 
identification process. and exploitation of these Perceptually 
Sign$cant Regions (PSRs) to guide the training process. 
Tl-~us, exploitation of the non-uniform distribution of informa- 
tion specific to the language identilication process, locating the 
utterance portions where the levels of such information are 
elevated (PSRs), and utilizing them to improve the 1.11) 
training process, are the underlying concepts of the PGT. Our 
approach involves the Recurrent Neural Network (RNN) 
architecture as the fundamental 1.11) mechanism [ 1,3]. We 
believe that the long-term intra-utterance context plays a major 
role in the essential 1.111. The inclusion of this context is our 
principal motivation for the RNN-based approach. Our 
approach does not require phonetic labeling or transcription 01 
the speech corpus. The developmental and experimental 
aspects of our research include a system implementing our 
approach, LIKENNGT (Language Identification with 

REcurrent Neural networks and Perceptually Guided 
Training). The LlD training experiments with I.IREN/PGT 
show the efficacy of our approach. Our research includes 
investigations of a number of issues in RNN LID training, and 
proposes a number of algorithmic solutions for the RNN train- 
ing for LID. Our 1,lD experiments were on linglish, German, 
and Mandarin Chinese, using the OCrI-1‘S [5] speech corpus. 

2. RNN-BASED APPROACH 

We suggest that the acoustical context range is particularl) 
extensive and important in LID (compared to, e.g., a phonetic 
recognition task). We propose that the implicit inclusion of the 
past, inherent in RNNs due to their feedback connections, can 
account for that context, making 1~s particularly suitable for 
LLD. Regarding the type of input, although LIREN/PGT has 
provisions for possible future experiments with speech units (in 
particular the automatically derived fenonic units 131) its 
baseline form relies on the acoustic domain feature vectors. 
The principal reason for this is the desire to deliver to the RNN 
main engine the maximum of the information available in the 
signal. A conversion of the acoustic domain features into 
speech units simplilies the network subsequent operation (a 
simpler classification problem), but it filters the information, 
narrowing its scope to the chosen speech unit domain. In the 
absence of the fundamental understanding of the essential LIl) 
process, we chose to attempt the RNN recognition using all 
available information, i.e., the acoustic feature vectors, in spite 
of the difficulty issue (feature space dimensionality). Our 
results show that, with appropriate algorithmic provisions, such 
1 .lD training can be successful. 

The global architecture of the LlRl~NIPGl‘ system is shown in 
Figure 1. The preparatory stages (B), alded by auxiliary 
utilities (F) generate the speech data repository contents in the 
“LIRliNIPG’I‘ native” form. The VideVox facility [2) (C) is 
responsible for supplying the PG’l’ information (discussed later) 
that: together with the corresponding speech waveform data 
constitutes the I,lREN/pGT main speech data repository (D). 
The feature generation stages (E) produce the feature vector 
sets (G), the input to the RNN engine. The LIREN/PG’I 
system was developed in C and MS Visual C++ ver. 5.0, on a 
WindowsN’l’, 200 MHz Pentium Pro system with 64MB RAM. 

Recurrent Architectures in LIRENIPGT. Two related RNN 
architectures have been used in LIRENIPGT. The first; a fully 
interconnected two-layer recurrent architecture, is shown in 
Figure 2a. This diagrammatic representation does not show the 
multitude of nodes and connections. The output of each node 
in layer Ll connects to each node of layer I,2 ((A) is a fully 
connected bipartite graph). State input nodes receive their 
inputs through the delay stage from the state output nodes in 



layer L2. J‘he external output nodes deliver the language 
probability (one node per language). The number of state 
nodes impacts the degree of context inclusion by the network. 
In this work the number of state nodes was often about 160. 
With 21 input nodes? a bias node and two external output 
nodes the network contains a total of 344 nodes; and I18336 
weight connections. Neural networks of such size present 
serious challenges in development and training (further 
exacerbated by the delay la-‘/ loops which, during training: turn 
the network into a large multilayer structure; replicating in 
time the above spatial view). The second neural network 
architecture in LLRI<N/PGI‘, shown in Figure 2b, is RTRI. [S]. 
The Ll nodes consist of bias and input nodes, and are fully 
interconnected to layer L2 via the connection structure (A). 
Thus (A) contains fi I ij(r--t) links. where h. i, r, and I, are the 
number of bias, input, RTRL and target nodes, respectively. 
All nodes in layer L2 are also connected through the delay 
stage (z.‘) to all nodes of L2. Thus the feedback loop involves 
a full!; interconnected set of links (B. C). As in the previous 
case, our diagrammatic representation hides the huge six of 
the network (Figure 2b does not show explicitly the multitude 
of nodes and connections). 

Target functions. In T.II>. the RNN target function definition 
issue is not trivial. While the input behavior (speech) is quite 
dynamic; the output (language) remains static upon the change 
of speakers, their speaking style or gender. and changes on!r: at 
those utterance boundaries where the two utterances, adjacent 
in the training data stream, belong to different lungztage.s. In 
[ 1,3]; we have described three target function models of 
LIREN/PGT: the piece-wise constant, the exponentid rise, and 
the linear fuzzy half models. The linear fiz.qv half model we 
proposed, smoothens the training process by introducing 
overlaps in language probabilities during the first half of each 
utterance: while the true-language target vector component 
increases, the components (probabilities) for other languages 
decrease correspondingly. This fiwzy overlap stops at mid- 
point of the utterance, and the target components remain 
constant across utterances, until a language change occurs, at 
which point the process repeats. The fuzzy overlap effect starts 
only on those utterance boundaries on which the language 
actuul~v changes: other boundaries have no cn‘ect (regardless 
of, e.g., speaker or speech mode changes between utterances). 
The “fuxv half’ target timction resulted in the best 
performance. 

Acoustic Signal Processing. LKU:N/lGT includes three types 
of acoustical processing front-end subsystems. for a comparison 
of different feature vector types’ cllicacv in RNN I.Il>. In the 
spectral domain based feuture vector suhsystcw, similar to [6 ], 
short term Fourier analysis (FIT) is perlixmedF and the power 
spectrum is divided into twenty m&scale bins. The resulting 
twenty spectral energy coefficients and the signal energy form 
an R’“” feature vector space. In the cepstral domain-bused 
J&we elector sub.yv.ytem, the 16th order LPC based cepstral 
coefficients and, as in 161, the fundamental frequency estimate 
and the voicing level, form an R”” feature vector space. In the 
RAW-I-PLP bused feature \pector subsystem. the 8th order 
RASI‘A-PLP [4] coefficients and the signal power form an Ri9’ 
feature vector space. Our experiments, comparing I ID 

performance of these three feature vector tlpcs, did not show 
major perfotiancc differences between -the lower-dimensional 
(91)) RASTA-PIP feature vectors and substantially higher- 
dimensional (cg., 2 ID) spectral or cepstral feature vectors. 
These results indicate that RASTA-PLP based features are 
particularl>- suitable for LID. 
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Figure 2: LIREN/PGT recurrent neural network architectures 

3. PERCEPTUALLY GUIDED TRAINING 

Perceptually Guided i’kuining (PGT), a novel method for IJD 
training, is a key component of our overall approach. 
Perceptual experiments indicate ]3] that humans notice certain 
specific utterance parts when listening to an unknown 
language. We propose that language-idcntitv-specific 



information-is distributed in a non-uniform fashion along the 
utterance, and that human listeners are able to spot the 
locations within the utterance whcrc the levels of such 
information are elevated. WC do not know what aspects of the 
total intbrmation present in the speech signal actually 
constitute the language-idcntih-specilic inli)rmation. 
llowevcr, \ve propose that the location of utterance portions 
that arc “characteristic” for human listeners, can be determined 
experimentally, and that these regions exhibit elevated levels 
of the language-identity-specific information. In PGT; WC 
perform the detection of such regions and, using the detection 
results, we subsequently guide the training process to 
cmphasizc these parts of the training data (utterances) that are 
particularly language-identity-significant perceptually. 

3.1 PSR Identification 

We use VideVox, a dedicated facility wc developed 121, to 
identify regions within the utterance that appear to listeners as 
particularly characteristic of the language used in the given 
utterance. The data obtained in this process represent what wc 
termed as the Perceptualb Signijicant Regions fl?SRj. delined 
as the regions where the density of language-identity-specilic 
information is particularly high [3]. The PSR boundaries are 
not required to be precise and are described probabilistically. 
We do not constrain PSRs in any \vap, c.g., we do not impose 
any assumptions or constraints on their duration or content. 

I’SK identification is accomplished through perceptual 
experiments, in which human subjects interact with VidcVox. 
During the experiment session. VideVox is used [2] to present 
the utterances in difl‘erent languages to the subject. VideVox 
facilities 121; designed specifically for the PSR idcntilication 
task, allow subjects to identify and designate PSlls. We 
performed perceptual experiments to elicit the PSR data for 
Icnglish, German; and Mandarin Chinese (subjects interacted 
with VideVox, using its facilities to identify PSRs). Our 
experiments indicate that the PSR detection is possible. The 
subjects had no difficulty in identifying “characteristic” regions 
for the languages they did not know. The overlaps between the 
areas identified by the subjects indicate the existence of PSRs 
common to different listeners. In addition, we observed the 
following trends during the PSR identification. For English. 
the PSRs often included phrases containing /th/. IdhI; /r/, “the”, 
/jh/, and vocal pauses tilled with /ae/; /a/. I:or German, PSRs 
often included phrases containing ich, ich-bin, uuf: the (as in 
hi&), ro (as in huem): ein, die, Ken (as in gegung& den or 
ten (as in arbeim), and “stru” (as in ~sse). For Mandarin 
Chinese, PSRs ollcn included rapid successions of syllables 
generally starting with the Mandarin Chinese phones similar to 
Iv/. lchl, and Jshl. However. while the above trends appeared 
to reprcscnt expectable phonetically oriented patterns (e.g., /th/ 
in English), others were relativclv unexpected (e.g., “rd for 
German). It should bc emphasized that, while the above 
phonetic sequences wcrc observed in PSRs, the actual PSRs 
that contained them were typically much longer in duration, 
and thus should not be considered as chiclly due to, or 
reducible to, these phonetic sequences. We believe that PSRs 
arise liom etfects that are nor restricted only to the phonetic 

domain and,, that they include long-range (beyond phonetic 
level) phenomena. _ _ 

Based on our experiments, it appeared that in lo-sec. 
utterances (OGI-TS) the subjects could identify up to four 
PSRs. After that, the efficiency dropped off visibly and the 
subjects were likely to “fix” on a specific short interval within 
the utterance. If confirmed, this phenomenon may also be 
related to our procedure, e.g., the repetitive listening to the 
entire utterance (allowed by VideVox), to which subjects often 
resorted after concluding the identification of a I’SR. 
Regarding the utterance duration, the PSR identification 
appeared to be easier in longer utterances (story-bt), than in 
short (I 0 sec.) ones. 

3.2 PSR re-exposure algorithm 

We developed two techniques by which the PGT makes use of 
the PSR data during the neural network training. The first 
technique, the target finction profiling algorithm, involves a 
dynamic modification of the target function at the PSR 
locations, reinforcing the correct language target function 
vector component at those locations. The second technique, the 
PSR re-exposure algorithm, proved to perform better of the 
two. The essence of the PSR re-exposure algorithm is a 
controlled and automatic increase of the neural network’s 
exposure during training to the language-identity-specific 
information contained in the PSRs. Each PSR is presented (re- 
exposed) to the network r times in each training epoch (r is an 
adjustable re-exposure factor). When LIRT:N/PGT operates in 
the PSR re-expsure training mode, the feature vector stream 
processing includes the detection of the PSRs’ presence. The 
boundaries of each PSR are determined and the PSR is in effect 
replicated from the training viewpoint. Thus the influence of 
the PSR areas on the training process is reinforced r limes. 
The PG’I‘ intensity [3] is proportional to r. Our cxperimcnts 
showed that r=8 w-as a good operating point for the algorithm. 
This operating point appeared to be essentially independent of 
the PSR duration and specifics. 

We performed a large number of experiments to determine the 
eflicacy of the PGT method. The English/German experiments 
were particularly interesting, given the linguistic proximity of 
the two languages. Our experiments showed a consistent 
superiority of the PGT training performance over a non-PGT 
training, with an improvement of about 9%. 

4. RNN TRAINING IN LID 

4.1 Backpropagation Through Time 

Backpropagation Through Time (BTT) 171 was one of two 
training modes used in this work. We used the adaptive weight 
update algorithm [6]. Our initial LID experiments with it 
showed convergence difficulties, attributed to the difficulty of 
the Lll> task directly based on acoustic features. Among the 
modifications we introduced in BT’I‘ to achieve training 
convergence, the step size range restriction, and the avoidance 
of near-zero gradient operations, were found most cffrctivc 11 J. 
Limiting the step sizes (in each weight space dimension) to a 



band of four orders of magnitude of the initial step size helped 
prevent stec size drifting. When the weight update decision 
(gradient sign test 161) originated from near-zero values, i.e.. 
the local gradient Ir?J(tj~c%+,l was below a low-value threshold, 
the corresponding weight update was withheld. This had a 
stabilizing eft‘cct on the training process. 

Number of state nodes. The ability of the RNN to account for 
the context (past) is influenced by the number of state nodes. 
We studied the effect of the number of state nodes on the ID 
training. IiNNs \vith 75 nodes in the state layers performed 
acceptably well. Our best results involved 120 to 160 state 
nodes; we used 160 state nodes in many of our experiments. 

BTT sequence extent. The t~‘l“l‘ sequence (expansion) lqth 
is the extent of the explicit context inclusion in BTT. We 
cxpcrimented with two types 01‘ context interval: a selectable 
fixed length, and a variable length equal to the length of 
utterance. The fixed I~‘I“I’ sequence lengths below 0.3 utterance 
length performed relatively poorly. reflecting an insuffcicnt 
context inclusion level. A more complex, variable sequence 
length approach performed better, while the best performance 
was attained with fixed sequence lengths in the range of 0.3 to 
0.9 utterance lengths. 

4.2 Aperiodic Update Recurrent Training 

The second training algorithm in LIREN/I’(;‘I‘ is the Aperiodic 
IJpdate Recurrent Training (AI JR’I‘) algorithm me developed. 
AUR’I‘ is in essence a modified Williams-Zipser RTRL 
algorithm 181. The AUR’I‘ method is based on the specilic 
character of the LID task: the input feature vectors are naturall! 
grouped by utterances. Considering this; and the possibilities of 
changes (speaker, speech characteristics, or language) from OIIC’ 
utterance to another. we tie the reset of the RTlU, impact 
coellicients (representing the influence of any weight on the 
output of anv node) to the utterance endpoints. ‘thus; unlike in 
R’TRI,, the impact matrix reset mechanism in our method is 
aperiodic, since it is dependent on the (variablej utterance 
Icngths. In AURT; both the aperiodic reset of the impact 
matrix, and the weights update process take place at those 
points. We performed a multitude of I ,111 training cspcriments, 
on English, German and Mandarin Chinese, with and \\ithout 
PGT, to determine the oflicacy of AURT. The non-PG’l AUR7 
training typically exhibited a convergent but slo\\ learning 
behavior. The PGT non-AURT experiments often exhibited 
rapid learning, especially in the initial phases. However; not 
infrequently, WC observed a major instability developing later 
on, followed by divergence. On the other hand; the PG’l 
AURT, under the same conditions. offered instability-lice 
convergence. Based on these experiments, we conclude that 
the main advantage of the AURT algorithm is its stability. 
while preserving an acceptable learning progress rate. 

5. SUMMARY 

We have described a novel approach to Automatic I.anguage 
Identification (L~j. involving Perceptuullv Guided Training 
(PGT) and Recurrent Neural Networks. PGT is based on 
locating and utilizing I’erceptual!v Si&kznt Regions (PSRs), 
the utterance regions that arc particularly significant 

perceptually for the language identification process. We 
demonstrated that PGT improves the 1.11) training performance, 
with consistent improvements of around- 9% versus the non- 
PGT mode. We suggested that i&a-utterance acoustical 
context is particularly critical (and extensive) in LID. We 
proposed Recurrent Neural Networks as the central 
identification architecture, motivated by a capability of an 
implicit inclusion of that context via the feedback mechanism 
of the RNN. Our approach does not require phonetic labeling 
or transcription of the training data. We proposed several 
algorithmic directions for RNN training in ID. Thcsc include 
the Aperiodic IJpdate Recurrent Training (AURT), and I,ID- 
related modifications to the Backpropagation Through Time. 
We have shown experimentally the convergence and the 
Ibasibility of RNN training for I.lT), when the algorithmic 
solutions WC have proposed are employed. ‘the LIRl;N/F’GT 
system wc have developed implements our approach to LID. 
Experimental aspects included LID experiments with English, 
German, and Mandarin Chinese, using the OGI-TS speech 
corpus. The results of our experiments demonstrate the 
promise of Perceptually Guided Training, and Recurrent 
Neural Networks, for Automatic Language Identification. 
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