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ABSTRACT

In this paper we characterize the sensitivity of two speaker-
dependent isolated word recognizers toward several kinds of
variability and distortions; namely noise, channels, distance to
microphone and target language. Both recognizers use a
phoneme similarity acoustic front-end as a rich representation
for speech from which reliable features are extracted. A cross-
correlation test showed that a phoneme similarity front-end is
more robust to variability and distortions (especially intra-
speaker variability) than a LPC cepstral front-end. The first
recognizer (Condor) uses a frame-based approach while the
second (Pasha) uses the phoneme similarity information
contained in a small number of speech segments. The two
recognition methods are presented with a special emphasis on
the robustness improvements and computational trade-offs that
have been made. Experimental results are reported for car noise
at different speeds, speakerphone versus handset input in an
office environment and several target languages. Recognition
accuracy greater than 94% was achieved in a car environment at
60 mph (Condor) and recognition accuracy greater than 95%
was achieved for speakerphone input at a distance of 50 cm. in
an office environment.

1. INTRODUCTION

Phonemes are essentially discriminated by spectral trajectories
which extend well beyond the 10 to 20 milliseconds
encompassed in short term spectral analysis methods.
Concatenating consecutive analysis vectors into a time-spectral
pattern (TSP) vector capture these trajectories. To use these
long feature vectors in speech recognition, however, requires an
efficient representation; one such representation is phoneme
similarities. Phoneme similarities have been used for speech
recognition in frame-by-frame dynamic programming matching
procedures [1,2,3,5], a continuous density HMM [1] and a
matching procedure based on regions of high phoneme
similarity [3,4,5]. As phoneme similarities are computed over
several consecutive frames of speech, they capture both static
and dynamic spectral characteristics. They have been shown to
be relatively insensitive to variations between speakers [2] for
recognition of isolated words.

2. PHONEME SIMILARITIES

Phoneme similarities can be computed from any fixed frame-
rate acoustic analysis, such as LPC cepstral coefficients or
filter-bank energies. A fixed number of consecutive analysis
vectors are concatenated to form time-spectral pattern vectors. If
the time-spectral pattern vectors in each phoneme class p are
adequately described by normal distributions with separate
means (Up) but common covariance (W), a time-spectral
pattern vector X can be classified in the phoneme class p which
maximizes the linear classification function Ly:
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Phoneme similarity values (Sp) are in the form of posterior
probabilities, and are computed from the linear classification
function by exponentiation and scaling of the vector of P linear
classification functions to unit norm.

Increasing the constant exponential factor (o) emphasizes the
similarity values of the dominant phoneme, and inhibits the
lesser phonemes in the vector of similarity values. The result is
that the time series of phoneme similarity values may be
approximated as a near-zero background level punctuated by
regions of high phoneme similarity as shown in Figure 1.
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Figure 1: Phoneme similarity values versus time
for two major discriminating phonemes in the name “Will”.

A training procedure for phoneme similarity reference models,
based on the TIMIT database, was presented in [5].



3. ROBUSTNESS

3.1. Comparison of LPC Cepstrum Features
and Similarity Features

A cross correlation test was used to quantify the benefit of a
similarity feature based approach over raw cepstrum features.
To compare each approach, pairs of utterances were aligned
using dynamic time warping. Between the pair, the cross
correlation coefficient was computed for each feature as given
by the following equation:

oy -2y
I - E Sy -Gy

r=

For the cepstrum, the correlation coefficients were averaged
over its 12 features. For the similarities, the 12 phonemes with
the greatest coefficients were averaged. Figure 2 shows that
similarity features are consistently more repeatable across
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Figure 2: Similarity vs. LPC Cepstrum Cross-Correlation.

matched conditions and various mismatched conditions, such as
different talker, different speed of car noise or handset (HS)
versus speakerphone (SP). On the telephone speech, each value
was computed using 100 utterances (about 85 seconds) versus
25 utterances (about 15 seconds) on the car speech. Phoneme
models were tuned to a car environment using multi-style
training (see below) but not to the handset/speakerphone
environment.

3.1. Multi-style Training

Training utterances may be artificially modified by additive
noise or linear filtering, and re-used as additional training
repetitions. This simulates more varied testing conditions at
training time and results in useful statistics on the variability of
features used for recognition. This multi-style training
technique is used 1) for the training of phoneme reference
models and 2) for the training of word models. For the cross-
correlation experiment described above, clean data and clean
data plus car noise at 5dB SNR was used. Multi-style training in
the case of a phoneme similarity front-end with additive noise
was shown in [5] to decrease isolated word recognition error
rates rate by 45 to 51% for multi-style training of both phoneme
and word models.

3.2. Speech Equalization

Speech equalization is a noise-masking technique that was
recently developed. It aims at decreasing the mismatch between
training and testing utterances especially in the case of
mismatch channels such as handset and speakerphone
microphones. The equalization is done in the time domain and
is therefore fairly inexpensive. It is driven by three targets: a
channel spectral shape, a background noise level and a speech-
to-noise ratio (SNR). After applying a channel-dependent filter,
the equalization procedure adds noise to the input signals to
keep the background level and the SNR near their respective
targets in real-time. In the case of the handset/speakerphone
problem, the method is used to transform handset data into
speakerphone data.

3.3. Automatic Endpoint Detection

To better cope with speech, channel and environment
variability, a loose endpoint detection strategy was elected. In
effect the recognizers use other sources of knowledge (e.g.
similarity background noise) or spotting techniques to better
refine those endpoints. To deal with fairly noisy environments
such as the car, energy based endpoint detectors are not robust
enough. In such cases, spectral subtraction and band-pass
filtering (300-3400Hz frequency band) was used to generate
more accurate endpoints.

4. SPEECH RECOGNITION METHODS

Phoneme similarities is a rich and redundant form of speech
representation that may be used for speech recognition in many
ways. However robust feature extraction techniques are
generally required when targeting low-end hardware platforms.
Such techniques include:

» aligning time series of multiple high phoneme similarities
and delta similarities frame-by-frame (Condor system
described below).

» aligning reliable regions of high phoneme similarity (TC
stage in Alibaba [4]).

* comparing the number of high phoneme similarity
regions found in a fixed number of segments in the
utterance (RC stage in Alibaba [4]).

* comparing the typical similarity level found in a fixed
number of segments in the utterance (Pasha system
described below).

4.1. Similarity Frame-Based Method

The Condor system performs frame-by-frame alignment of the
time series of phoneme similarity vectors for an unknown
utterance to a frame-based word reference. Each word reference
frame contains the N similarity values and N delta similarity
values of largest magnitude, and the corresponding 2N
phoneme identifiers; typically, N is set to six out of a total of 55
phonemes. Word references are created from one or several
training utterances by aligning the training utterances with



dynamic time warping and averaging the frame data. The local
distance for the alignment is a convex combination of the cosine
of the angle between the test and reference similarity vectors
and the cosine of the angle between the test and reference delta
similarity vectors [2].

Condor has relatively large word reference models, and high
computational complexity. However the high redundancy in the
speech representation due to storing multiple phoneme
similarities at small time increments affords more robust
performance in severe environments, such are the car.

4.2. Similarity Segment-Based Method

Unlike Condor, the Pasha system uses a segment-based
approach to represent words. It is a robust extension of
Alibaba’s fast-match stage (RC stage) presented in [4]. The
recognition strategy in RC was based on the number of high
similarity regions found is each segment. While it performed
well as a fast-match stage (top 10 candidates), it was not found
accurate and robust enough as a recognizer especially in the
case of noise and channel mismatch. The degradation was
shown to come from 1) the segmentation method (segments
were identified by dividing the utterance into S segments of
equal duration) and 2) the use of thresholds in the detection of
high similarity regions within the similarity time series. In
Pasha, the segmentation was greatly improved and instead of a
discrete approach a continuous approach was implemented to
account primarily for the information held within the high
similarity regions.

In Pasha, an input utterance is first divided into S segments
such that the phoneme similarity density over all phonemes is
equal in each segment. In this process, the similarity
background is subtracted out to better cope with potential
automatic endpoint errors. Then the average Root Sum Square
(RSS) value of each phoneme segment is computed along with
its variance (used as a weighting factor) over the training
utterances.

This method allows for a static alignment of the test utterance
that is word-independent. Pasha has small word reference
models and low computational complexity, while giving

Condor and Pasha make good use of phoneme similarities in
the sense that they both achieve high resolution. In Condor the
high resolution is in the time domain while in Pasha the high
resolution is in the phoneme domain.

5. EXPERIMENTS

Recognition accuracy has been evaluated for each recognizer in
separate conditions.

5.1. Car Environment (Condor)

Ten subjects recorded 25 common English names in one of two
compact cars with a microphone mounted on the sun-visor. The

Testing Condition Recognition
(Speed) Accuracy
Parked 99.2
30 MPH 98.8
60 MPH 94.6

Table 2: Recognition accuracy in a car using Condor on
25 names with automatic endpoints.

Condor system was trained with two repetitions of the
vocabulary while parked. Testing was done with one repetition
recorded while parked, one at 30 miles-per-hour, and two at 60
miles-per-hour (see Table 2). To account for the noise
variability, multi-style training and spectral noise subtraction
was used.

5.2. Office Telephone (Pasha)

Ten subjects recorded 100 common English names (50 first
names and 50 first and last names) in an office environment.
Two training and one testing repetition were recorded on the
handset of a Panasonic DBS key telephone. Additional testing
repetitions were recorded on the speakerphone microphone
while the speakerphone was at 50 or 100 centimeters from the
talker. Table 3 shows the improvements in accuracy gained with
the word modeling in Pasha over the original RC modeling in
Alibaba for handset and speakerphone channels. In this
experiment, the same front-end (i.e. segmentation by equal

adequate recognition accuracy in home or office environments. phoneme similarity density, multi-style training, speech
equalization) was used.
Condor Pasha Word Modeling
Time Increment Frame (50/sec.) | Segment (3/word) Testing Condition RC stage Pasha
Alignment Method | Dynamic Time None (counting high (summing squared
Warping (Static Alignment) similarity regions) | similarity values)
Local Distance Correlation Weighted Euclidean Handset 94.6 98.3
Cosine Distance Speakerphone (50 cm) 86.4 95.2
Word Model 1200/ 330 /word Speakerphone (100 cm) 82.0 93.0
sec.
Parameters (55 phonemes) Table 3: Speaker-dependent recognition accuracy
Coﬁiﬁéle(éi\;ior d 800 bytes/sec. 110 bytes/word on 100 common English names with automatic endpoints
in an office environment.

Table 1: Comparison of recognition methods used
in Condor and Pasha systems.

5.3. Robustness to Different Languages

For each of three languages, two native talkers recorded 100
common names in their language (50 first names and 50 first



and last names) in an office environment. The training and
testing conditions were similar to the experiment described in
section 5.2. Table 4 shows that a phoneme similarity front-end
using only English phoneme models performs fairly well across
languages. Further improvements could be achieved. In the case
of the porting to a different language, specific phoneme models
can easily be built for that language. In the case where the
vocabulary itself is mixed, a multi-lingual phoneme set could be
used.

Target Language Handset Recognition Accuracy
Chinese 97.9
French 974
German 97.9

Table 4: Speaker-dependent recognition accuracy for
three target languages using the Pasha recognizer on
100 common names in an office environment with
automatic endpoints.

6. IMPLEMENTATION ISSUES

Both recognition methods have been implemented to run in
real-time on small hardware using a TMS320C203 fixed-point
DSP processor [6]. Speech endpoint detection, LPC analysis
and phoneme similarity computations are all done frame-
synchronously. In the Condor system the DTW matching
procedure is also done frame-synchronously every 20ms. As
Pasha’s segmentation depends on the word endpoints,
recognition processing is not frame-synchronous. However, as
its recognition complexity is small, recognition delay for an
approximately 100-word vocabulary is not noticeable.

6.1. Data Compression

Product-type applications are often very much driven by
hardware costs which requires the choice of recognition features
that remain robust even when compressed and/or quantized.
Similarity values have been found to preserve most of their
information when quantized to four bits. Furthermore Pasha’s
word representation has been shown to perform equally well
when the information is stored on two bytes per phoneme
resulting in 110-byte word templates.

6.2. Phoneme Inventory Size

Our default implementations of Condor and Pasha use 55
phoneme units, corresponding to all TIMIT segments except the
closures, which were merged into their neighboring stop burst
segments. Based on hardware constraints and application
requirements, similarity front-ends can be downscaled to use
fewer phoneme units. Experiments with the Pasha recognizer
showed an average decrease in recognition accuracy of just
0.6% among all three testing conditions (Table 5) when only
using 37 phoneme units. The reduction from 55 to 37 phoneme
units represents a positive trade-off since the matching time and
memory required for storing the word models is proportional to
the phoneme set size.

Testing Condition 37 Phonemes 55 Phonemes
Handset 97.9 98.3
Speakerphone (50 cm) 94.7 95.2
Speakerphone (100 cm) 92.1 93.0

Table 5: Speaker-dependent recognition accuracy using the
Pasha recognizer on 100 common English names for different
phoneme sets with automatic endpoints.

7. CONCLUSIONS

Phoneme similarities have been shown to be more robust than
LPC cepstral parameters to speaker or channel variation. In
addition robustness to noise and channel degradation can be
further enhanced by inexpensive techniques such as multi-style
training and speech equalization.

Multiple phoneme similarities present redundant information
and can be the basis for different word representation methods,
having different size, complexity and accuracy trade-offs.
However the identification (e.g. high similarity regions, top N
high similarity values per frame) and extraction (e.g. discrete vs.
continuous extraction of high similarity regions as in the RC
stage and Pasha respectively) of reliable features is critical
when dealing with adverse conditions.

Recognition systems based on phoneme similarities can be
implemented in small hardware and achieve high recognition
accuracy in a variety of real-world operating conditions.
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