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ABSTRACT

Modeling data with Gaussian distributions is an impor-
tant statistical problem. To obtain robust models one im-
poses constraints the means and covariances of these distri-
butions [6, 4, 10, 8]. Constrained ML modeling implies the
existence of optimal feature spaces where the constraints
are more valid [2, 3]. This paper introduces one such con-
strained ML modeling technique called factor analysis in-
vartant to linear transformations (FACILT) which is essen-
tially factor analysis in optimal feature spaces. FACILT
is a generalization of several existing methods for model-
ing covariances. This paper presents an EM algorithm for

FACILT modeling.

1. INTRODUCTION

In Gaussian Modeling the model parameters (means and
covariances) are usually estimated using the Maximum
Likelihood (ML) principle. In many applications due to
data-insufficiency, computational and/or storage consider-
ations, one has to constrain the means and covariances so
that there are fewer parameters to estimate (e.g., diagonal
covariances, reduced-rank means, shared covariances etc.).
In such cases it is desirable to model in a feature space in
which the constraints are maximally satisfied. This pa-
per introduces one such constrained ML modeling tech-
nique called factor analyzed covariances invariant to linear
transformations (FACILT). FACILT is a direct generaliza-
tion of both standard factor analysis and semi-tied covari-
ance modeling. This paper presents an EM algorithm for
FACILT parameter estimation and gives results of speech
recognition experiments on two Large Vocabulary Contin-
uous Speech Recognition tasks: the first a dictation task
on an IBM internal database and the second on a Voicemail
transcription task on a Voicemail database distributed by

LDC.

2. DATA MODELING

The basic problem considered here is obtaining a sta-
tistical model of observed data where each sample is in-
dependent of any other and drawn from a finite set .S of
Gaussian distributions. FEach sample is associated with
a single Gaussian or state s € S viz., the observations
are conditionally independent given the state sequence. If

A d A
z1,2Z2,...,27 = X, ¢+ € R and s1,s2,...,87 = s are the
observation and state sequences, this corresponds to the
following model for the data:

p(x,8) = p(s)p(xls) = p(s) [ [ p(welss).

Such models occur often in practice. For example, if the
state-sequence is iid this corresponds to a Gaussian mix-

ture model of the data; if the state sequence is Markovian
this corresponds to a Hidden Markov Model (HMM) of the
data with Gaussian observations. This description also in-
cludes HMMs with Gaussian mixture observations if the
underlying state-sequence is the Gaussian mixture com-
ponent sequence. Whatever be the underlying p(s), the
p(x,8) is then completely described by state means (us)
and covariances (X.). In practical applications the estima-
tion of the means and covariances are constrained. Well-
known examples are Linear Discriminant Analysis (where
means are constrained to lie in a lower dimensional space
viz., Span({p:}) = k < d) and Diagonal Covariance (DC)
Modeling (where covariances are constrained to be diag-
onal viz., X5 = Ds, D diagonal). The constraints on
the covariance are typically used because using a Full Co-
variance (FC) Model is often not warranted. Another ex-
ample is the DCILT (diagonal covariances invariant to lin-
ear transformations) Model or semi-tied covariances model
where the covariances are constrained to be of the form
¥ = A,D,A!, with A, typically shared by several Gaus-
sians [4, 2, 3]. This corresponds to transforming the data
to an optimal feature space (in a state-dependent manner)
using A, and modeling using the diagonal covariance D,
in this space.

3. FACTOR ANALYSIS

Often in speech recognition the DC model is used even
though it is known a priori that the dimensions of the sam-
ple z; are known to be correlated (e.g., cepstral features).
Factor analysis is one approach to add more flexibility to
the DC Model to capture these correlations with few pa-
rameters. The basic idea in a Factor Analyzed Covariance
(FAC) Model is to estimate covariances of the form

T =AA+ O,

where ¥ is a diagonal matrix and A is a rectangular matrix
with typically much fewer columns than rows. A is referred
to as the factor loading matriz and each column of A is re-
ferred to as a factor. If A is zero the FAC Model reduces
to a DC Model. If A has k factors then the FAC Model
roughly tries to model the off-diagonal terms in ¥ using
a rank k matrix (AA'). The FAC model also corresponds
to an additive decomposition of the data into independent
components - a communality component and a unigueness
(independent variance) component: ¢ = ¢ + u, where ¢
has zero mean and covariance AA’, while u is distributed
N(p,®). The hope is that with very few factors (k < d) a
very good model of the covariance of the underlying Gauss-
ian distribution is obtained. The communality component
can be viewed as being generated by an underlying zero-
mean unit covariance process. In other words,

zr = Mgy 2t + Usy,

where z; is distributed N(0,I) and wu, is distributed
N(ps, ¥,). This viewpoint and the realization that the z;’s



can be considered latent variables leads one to an EM algo-
rithm for FAC Model parameter estimation [1, 7, 8]. The
FAC Model was recently applied for modeling the HMM

states for speech recognition [9, 10].

4. FACILT MODEL

Factor analysis is a special case of constrained ML mod-
eling with Gaussian distributions. Wherever there are con-
straints it is important check if the constraints are invari-
ant to linear transformation of the data. If the constrains
are not invariant to linear transformations, then one can
find an optimal linear transformation of the data so that
the constraints are optimally satisfied to the extent possi-
ble in the transformed space [2]. Clearly the FAC Model
is not invariant to linear transformations of the data since
after a linear transformation the uniqueness component
will not have a diagonal covariance. The FACILT model
corresponds to optimally transforming the data (possibly
in a state dependent manner) prior to modeling using a

FAC Model.

In FACILT covariances are constrained to be of the form:
Y =AA + ATTw(ATYY,

where A is the factor loading matrix, ¥ is the diagonal
uniqueness matrix, and A is the feature transformation
matrix. This corresponds to having a FAC Model of lin-
early transformed data. Indeed if data from each state is
transformed using a matrix A, then the FAC model cor-
responds to the decomposition:

Asﬁlzt = Anzt + Usy,

or equivalently (by redefining A, to be A7'A,, s € 5)
modeling the original data using the model

-1
oy = Asyze + Ag, us,y,

which gives rise to covariances of the form ¥, = A AL +

A7'® AT, Thus FACILT is a generalization of both fac-
tor analysis (where Ay = I) and semi-tied covariance mod-

eling (where A, = 0).

It turns out that in FACILT modeling, data drawn from
a set of Gaussians with covariances constrained as above
can be represented in the following fashion

Ty = Anzt + Hs + As;'us“

where z; comes from Gaussian s; at time ¢ and 2; is an un-
observed Gaussian random variable distributed as N (0, I)
and us, is N(0, ®,,). In a FACILT Model the conditional

distribution of z: given s; € S and 2z, is

_%[(Tt—AstZt_l\"st)'A'st\I's_‘lAst(mt —As 2zt —psy)]
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Considering s: and 2; as latent variables (for all t) we
obtain an EM algorithm for ML estimation of FACILT
parameters viz. (As, U, ps, As).

If each Gaussian has its own (A,, ¥, A,), then the
ML estimates are trivially seen to be (0, Es,V.)) where
V:E;V. is the eigendecomposition of the sample covari-
ance of data from state s. However, if A; = I, then
there exists non-trivial ML solutions for As and ¥, - this
is akin to standard factor analysis for a single Gaussian
variable. More generally, if A, is shared then there is no
trivial solution. The main contribution of this paper is an

EM algorithm for this form of covariance modeling allow-
ing for the general case where A;, ¥, and A, are shared
independently by arbitrary disjoint collections of Gaus-
sians or states. For the rest of the paper we assume that
S = ULy = UpPp = UaAa are independent partitions of
S corresponding to the sharing of {A.}, {®.} and {A.}
respectively. Thatis, As = Aijifs€ Ly, ¥ =P, if s € Pp
and A; = A, if s € A,.

5. THE FACILT EM ALGORITHM

The goal 1s to maximize the likelithood of the data viz.,
p(x), with respect to (ps, As, ¥y, A:), the parameters in
the model. The complete data for this problem is given
by the triplet (x,z,s); the data, the hidden factors and
the underlying state-sequence. Using conditional indepen-
dence of observations given hidden variables

T
p(x,2,8) = p(s)p(zls)p(x|z, 8) = p(s)p(2) [ [ p(wel2s, s2).
t=1
T
The Gaussian parameters depend only on Hp(z¢|z¢, st),
t=1
while parameters modeling the state-sequence process are

in p(s). The posterior distribution of the latent variables
is

p(z,8]x) = p(s|x)p(z|s, x).
In EM one computes the ) function which is the expected
value of the log likelihood of the complete data with re-
spect to the posterior distribution on the hidden variables.

As for the Gaussian parameters it suffices to consider
p(x|z,s) instead of p(x,z,s). If § = {ﬂs,As,\Ils,As} and
6 = {ps, As, ¥, A.} are the current and new (to be esti-
mated) values of the parameters, then, from Eqn. 1,

Q6,0) = Eg |log ] pe(zlze,s0) ()

t=1
T
= Eg |log H H [po(z+|22, s)]“s’s‘)
t=1 s€S
T
= Z Z E;[6(s, s¢)log pe(ze|2e, 5)]
t=1 s€S
T
= DD Bsl6(s, 5] B [log pa(weze, o))
t=1 s€S
T
= YD () E; llog pe(aslz, 5)],
t=1 s€S

where v,(t) = p(s: = s|x) is the posterior probability of
being in state s at time ¢ given the old value of the para-
meters.

EM re-estimation formulae for the parameters are ob-
tained by setting the derivative of Q(6,6) with respect to
the parameters (#) equal to zero. Solving the resulting set
of simultaneous non-linear equations gives new values of
the parameters. In order to express the re-estimation for-
mulae we introduce several convenient variables. Firstly
note that Ej[log p(z:|z:, s)] depends on Eglz:|z:, s] and
Egy[z124|24, s], which are given respectively by

Eé[z¢|z¢, S] = ﬁs(zt - ﬂs)y (3)



and
Eé[ztz”zt: s] =1- ,GsAs + Eé[Zt|$t, S]E
where 8 = A;(\Ils + [\s[\;)_l,

statistics: r
(1) =3 7). (5)

)= 3 (t)ee. (%)
Z (t)ztzi. (M)

t=1

sz(t)E [z2lze, s]. (8)

é[zt|mt7 3],7 (4)
Now define the following

M».; i

(zsz;> = (t)Eé[ztz”zt, s]. (9)

o
I
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(t)ztEé[z”zt,s]. (10)
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Z”‘“@( g Belzeailonsl (1)

<‘~Il (z z)

<‘Ils_1Aszsz.,¢> = Z 'Ys(t)‘I’:lAsEé[ZtZ”(l:t, S].

t=1

(Aszs) :Z (1) Aszy.

Z () (Asze)?.

Var(Asz:) = <(Asz3)2> - <(As:r,s)>2.

Cov(z,:) = (zs24)

(12)

(13)

e

((Aszs)?) (14)

(15)

) (L) (16)

(L) (L
Cov(zs) = << ;> g; g; )
Cov(msz;) = << z>;> B g:; g:;, (18)
oo = ; - (z Z) (1:)(Cov(s) + AsCov(2s)AL)

— <:z:sz_:>A; — As<zsz;>'] . (19)

The re-estimation formulae are as follows:

A; estimation - Case 1 If A, are not shared among
states or are shared at a “lower level” than either the

A’s or U’sie., if for all s € L;, As = A, for some 7
and ¥, = ¥, for some p then

- (§(<zsz;> _,Ls<z;>)) (; <zsz;>) _1.

(20)

A; estimation - Case 2 If for all s € £;, A; = A, for
some r then the i*® row of A; is given by the ** row

of

252

(; (T Auz,2)) — \Il:lAsﬂs<zs>') (; < D)

(21)

Mean (us) estimation

(20) ~ Auzs)

T (22)

Bs =

Diagonal Variance (¥,) estimation

T, = Var(Aszs)+ diag(ACov(z,)AL)

—2diag(AsAsCov(zsz;)A;).

Optimal Feature Space (A.) estimation The rows of
A, are obtained in an iterative fashion using the fol-
lowing formula:

1,
a€hs 0 (23)
Ci

where c; are the cofactors of the i** row of A,.

5.1. Sufficient Statistics

Since we are estimating Gaussians the sufficient statis-
tics for the estimation are the zeroth, first and second
order statistics of the data for each Gaussian. In other
words it suffices to have the statistics in Eqn. 5-Eqn. 7.
If these statistics are available, then FAC Model can be
readily be obtained using EM. In some problems where
storage of the second order statistics is prohibitive (e.g.,
speech recognition), one can compute the alternate statis-
tics Eqn. 8-Eqn. 19. However, with these statistics only
one iteration of EM can be performed since the z statis-
tics change with each iteration. Therefore, repeated align-
ments of the training data is required in this mode of com-
putation. There is an evident tradeoff between computa-
tional and storage requirements.

5.2. Likelihood Computation

The likelihood computation for FAC Modeling is as com-
putationally intensive as FC Modeling since the inverse co-
variance (which is full) is required in both cases. However,
in a FAC Model the storage requirements can be reduced
by using the Sherman-Morrison-Woodbury formula for in-
version of rank-one updates of a matrix (recall the FAC
covariance is a rank k update of ¥). Indeed for a FAC
Model we have

D= U U AT+ ALTTIA)TIALD AL (24)
FACILT model likelihood computation is identical but for
the fact that the data has to be transformed in a class-
dependent fashion prior to likelihood computation. Specif-
ically, in the global ILT case (where there is a single global
transformation) the data can be transformed a priori and

a standard FAC Model used.



Sharing k=0 [ k=2 [ k=3 | k=4 | k=6
Phone 12.0 [ 12.1 | 12.3 | 12.3
Arc 12.3

HMM State 12.3

Baseline 12.9

Table 1: FAC Model Word Error Rate on Read Speech
Test Data: 32K Gaussians, 2.7K HMM states

Sharing k=0 | k=2 | k=4 | k=6
Phone 39.2 | 39.4 | 40.0
HMM State 39.6

Baseline 48.0

Table 2: FAC Model Word Error Rate on Spontaneous
Speech Test Data: T0K Gaussians, 3K HMM states

5.3. Initialization of Parameters

The EM algorithm leads to a local maximum of likeli-
hood and as such the solution depends on the initial value
of the parameters. If we start with a DC Model a good
starting point - one might suppose - is to initialize the
p#s’s and ¥,’s with the means and diagonal covariances of
the DC Model and to initialize the A,’s to zero. Unfortu-
nately, this is a local minimum of the likelihood function
and hence a stationary point. Therefore, typically A; are
randomly initialized with small values. One possibility is
to use Joreskog’s method as suggested in [6] for standard
factor analysis.

6. EXPERIMENTAL RESULTS

The first set of experiments were run on an internal test
database of about 1200 words each from 10 speakers. The
training data for this database is from an internal database
of read speech and the acoustic models used 52 phones,
156 sub-phonetic units, about 2.7K HMM states and about
32K Gaussians. The goal was to study the effect of sharing
factors at various levels of tying: phone-level, sub-phonetic
unit (arc) level, and context-dependent sub-phonetic unit
(or HMM state) level. The results shown in Table 6 indi-
cate that there may be an over-training problem. The best
results are obtained for the two-factor case with the least
number of parameters - i.e., with maximal sharing. With
sharing fixed at the phone level the number of factors were
changed to 3, 4, and 6 and the results seem to degrade with
number of factors - again perhaps indicating over-training.
All these systems were obtained by boot-strapping from a
diagonal covariance system.

To study the effectiveness of FAC Modeling on sponta-
neous speech data a series of experiments were conducted
on a Voicemail Test Data. The training data consists of
about 20 hours of Voicemail data and the test data con-
sists of about 43 Voicemail messages each about 20 seconds
duration. The acoustic models in these experiments used
an augmented phone set (two additional phones added to
model clicks and disfluencies), 162 sub-phonetic units, 3K
HMM states and 73K Gaussians. The results are shown
in Table 6.

Currently experiments are underway to study the effects
of using A,’s shared at the global, phone and sub-phonetic
unit levels. Also, it is fairly straightforward to decide on
the number of factors in a data-driven fashion based on
the relative gain in likelihood.

7. CONCLUSION

This paper introduces FACILT - a new covariance mod-
eling technique for Gaussian distributions - and presents
and EM algorithm for estimating the model parameters
in FACILT. FACILT is factor analysis in optimal fea-
ture spaces and hence is a generalization of classical fac-
tor analysis. Semi-tied covariance modeling and diago-
nal covariance modeling can be seen as a special cases of

FACILT.
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