OVERVIEW OF THE MAYA SPOKEN LANGUAGE SYSTEM

Simon Downey, Andrew Breen, Maria Fernandez, Edward Kaneen

Email: simon.downey@bt.com

BT Labs, Martlesham Heath, Ipswich, UK

ABSTRACT

Recent developments in distributed system processing have
opened the doors to the running of highly complex systems
over a number of networked computers. This enables the
complexity of a system to be hidden behind a small,
lightweight user interface - for example a downloadable web
page. The Maya system makes use of such interfaces to
combine the functionality of speech recognition, synthesis
robust parsing, text generation and dialogue management into a
highly flexible multimodal architecture, working in real time.

This paper describes the development of the architecture and
interfaces to each system component. The configuration of the
system to particular tasks is discussed, making use of an email
secretary task as an example. Once configured, the system is
able to adopt all the functionality of a conventional email
system and extend these capabilities by allowing complex
queries to be made about mail messages.

1. INTRODUCTION

A significant component of any intelligent environment is the
human - machine interface. It is highly likely that in the future
such an interface will, for the majority of applications, closely
model human to human communication. In fact we may
expect that the human - machine interface will increasingly
mimic the behavior and appearance of humans.

Two years ago BT set up the Maya project. The aim of this
project was to research into the spoken language and
multimodal aspects of such an interface and to provide an
effective computational research framework. Due to scale of
the problem, Maya collaborates closely with a number of other
groups within BT, these include speech synthesis [1],
recognition [2], understanding [3] and virtual humans [4]. The
project is developing an infrastructure that enables advanced
research to coexist with demonstrable solutions and has
designed an environment for an email application, described
further in [5].

The eventual goal of the work is to construct a system which
will communicate with people in a way that is both natural and
pleasant for its human users. Such a goal is a long way off, and
is unlikely ever to be achieved simply by bolting together "off-
the-shelf” components. Clearly no single machine or program
can currently hope to accommodate this degree of complexity -
the solution is to provide component services, which exist as
part of a distributed computer system. These component
services (e.g. speech synthesis, recognition and understanding)

exist independently of any particular application, on a variety
of computers and are written in a number of different computer
languages. The services communicate through a unifying
standard interface language (IDL). Currently the system uses
the Object Management Group’s (OMG) Common Object
Request Broker Architecture (CORBA).

One practical target for the system was that it should be able to
work in real time — responses to user requests must not
generate unacceptable pauses or system delays. In order to
achieve this, an event-based system architecture was
developed. This architecture allows individual components of
the system to run in parallel and allows the system to continue
with other tasks if a request is made which could involve a
long or indeterminate transaction time (for instance a query to
a remote database). The event driven nature of the system
raises issues of sequencing and concurrency, which are dealt
with in the paper.

The communication between layers and services in the Maya
system is then discussed through means of an example
interaction with the system.

2. THE MAYA SYSTEM

This section outlines the system’s architecture and gives a brief
overview of the different components. Maya consists of four
Functional Layers: the User Layer; the Presentation Layer; the
Strategy Layer and the Information Layer. Communication
between layers take place via event channels, which are
effectively queues storing the information passing between
them. It is the interaction between the layers that makes
possible an effective dialogue with the user. A schematic view
of the system is shown in Figure 1.

Each layer comprises a set of co-operating services. These
services come in two forms, core services (labeled agents in
the diagram) and component services. The agents act as
facilitating services helping control the flow of information
through the system and co-ordinate the behaviour of
component services. The number and type of component
services available within a particular configuration of Maya
will vary depending on the modality of the application being
built. As a minimum, the Maya system will contain speech
recognition, parsing, dialogue and speech generation services.
Each of these component services may in turn be composed of
a number of co-operating sub-processes. For example, the
speech generation component within Maya has at its core, BT’s
Laureate text-to-speech system [1].

{Resource Manager
T

Presentation \,
Graphical Agent
User

Interface

Audio
User
Interface

Recogniser

User layer Presentation layer

Event channels

Strategy '\ Information
Agent Agent
TR)

Text
N Generation

Strategy layer Information layer

Figure 1 Overview of the Maya System Architecture

The User layer facilitates the interaction of the user with the
system. This interaction may use multiple input and output
modalities. For input, text and mouse are supplied via the
graphical user interface (GUI), and speech via the audio user
interface. Accompanying the input modalities, a face
recognition component is available for logging the user on to
the system.

The output modalities are text, graphics and again, speech. In
addition to these output possibilities, combining both graphical
and auditory data is a talking head component (not shown).

The Presentation layer is responsible for presenting data to,
and retrieving information from the user layer via input and
output queues. The component services in the Presentation
layer include:

. An audio Front End Component. Incoming speech data
from the audio interface is routed here for
parameterisation before being fed on to the recogniser.
Utterances are also recorded to allow user options such
as playback/ re-recognition.

. The Recognition service. Passes the speech data to the
core recognition engine(s). Various forms of
recognition output are used by other parts of the
system: the top result is passed back to the user layer to
be displayed by the GUI, whereas the parsing
components of the system require a full acyclic
directed graph output (see section 4.2).

. The Speech Generation Component. Passed an input of
SGML marked-up text from the strategy layer, this
component uses text-to-speech synthesis to generate
the system response, as well as rendering lip/face
movements for replies sent to the Talking Head service.

The Strategy Layer is the “intelligent component” of the
system, and consists of:

. The Syntactic Parser. This takes as its input, a graph of
possible utterances from the speech recogniser. As
recognition is an inexact process, the syntactic parser
processes all the different possible word combinations
that could have been recognised. The parser processes
these combinations to produce an ordered list of
possible utterances, together with their syntactic parses.

. The Semantic Component. This represents meaning by
interpreting the information passed across from the
Syntactic parser. This semantic representation forms
the input for the Dialogue Manager.

. The Dialogue Manager. This is the core language
processing part system, the main function of which is

to produce a direct discourse with the user.

. The Text Generator. This produces marked up text
from a semantic representation coming out from the
dialogue manager.

The fourth and final layer, the Information layer, contains the
actual data that the user wants to access. Requests to
information services are made using standard database queries,
for instance when the Maya system is configured for the email
task, the information service is effectively a client to an IMAP
server.

Sitting above all the system layers is a Resource Management
service. This service has the responsibility of starting up and
configuring the system to the user environment. The Maya
system is designed for a multi-user environment, and as such
the Resource Manager may choose to share certain core
services amongst several users.

3. SYSTEM INTERFACES

One of the architectural aims for the Maya system was to make
the design fully flexible, allowing a plug-and-play approach to
the core components wherever possible. For this to be
achieved, ‘vendor independent’ APIs were needed for each of
the services, thus allowing the core ‘engines’ of each service to
be swapped in a manner seamless to the rest of the system.
This is made possible by distributing components of the
system using CORBA [6]. The CORBA approach to distributed
computing allows client and server objects to inter-operate via
Object Request Brokers (ORBs), across different platforms,
network protocols and source languages. The advantages of
such a design are that individual services may be worked and
tested in isolation, using the most appropriate machine or
language, and new system components can be easily
integrated. For instance, many of the components in the
strategy layer are written in Prolog, being the standard
programming language for natural language programming,
whereas presentation components are written in C or C++ as
these languages are better suited to processor intensive tasks
such as recognition or text-to-speech synthesis.

The resulting interfaces, written in IDL [6], are very simple
and share many common commands — such as configure, start
and stop. To replace an existing core service, all that is
required is to map each IDL. command to one providing the
same function in the new service, thus providing a CORBA
‘wrapper’ around the service. Most IDL compilers will
automatically generate skeleton interfaces for these mappings.

3.1. Information Flow

Information can be represented in several ways in the system. The
basic type of information is called an ‘event’, and may be generated
by any of the services. An event will typically represent a packet of
speech data, a marked up text phrase or a database query. Events
are passed from one core service to another via the event channels.

The system also passes around ‘messages’, these are typically
generated by component services to indicate when a task has been
achieved or when they have changed state (for example when the
recognition service has returned a result). System messages are
usually dealt with by the Maya agents, which act upon the message
by generating further messages/events to update the system with
the new information appropriately. For the recognition result
example, the message will be sent to the Presentation agent which
may then choose to display the recognition result on the User GUI,
tell the Front End component to stop sending data to the recogniser
and send the strategy layer any other information which may be
relevant to the current utterance.

3.2. Concurrency

For distributed systems with multi-modal input and output
capabilities, the issue of data sequencing arises. For example,
if a response to a user request requires some speech data to be
played via a talking head component, and other speech/sound
data to be produced using a TTS service, the system needs to
ensure that the events are played in the correct order, and do
not overlap. Sequencing is also dealt with by the system

agents. Each message and event carries a time stamp, and it is
the responsibility of the agents to interpret these when playing
out and routing information around the system.

This still leaves the problem of how long events that occur closely
in time may be considered ‘concurrent’. For example, a user
looking at several objects on a screen may utter a request of the
form ‘put that there’. In addition to the speech data being sent to
the system, additional events will be generated by the GUI to
indicate what that and there refer to in the present context (the
objects may have been selected via mouse clicks or a touch screen
for instance). As the recognition result is likely to arrive several
milliseconds after the location events, the system needs to
determine whether the events can be considered ‘concurrent’.

Although the Maya agents can deal with this problem
heuristically to some extent, the semantics layer must then be
able to interpret a set of concurrent events. In the above case,
the timing information should be sufficient to determine what
that and there refer to, given a correct transcription of the user
utterance. If there is a recognition error, or in cases of
ambiguity, the strategy component can make use of its
knowledge of the conversation so far to generate a dialogue
with the user and attempt to resolve the ambiguity.

4. USER INTERFACE

In Maya, the user is able to make requests to the system and
obtain information concerning their electronic mail. The user
can either make a query such as: “Do I have any new
messages?” or give commands such as: “Please read me
messages in April”. The aim is to produce a system that can
establish a full meaningful conversation with the user. This
requires that the human-machine interface is able to take into
account every feature that contributes to human dialogue, such
as ‘fluent’ speech effects (i.e. utterances subject to phonological
and phonetic effects) and prosodic modifications present in human-
to-human communication such as hesitation and restarts.

Apart from dealing with human speech phenomena, a spoken
dialogue system needs to attain coherence, consistency and
conciseness in its conversation with the user. This is very
important in dialogue because both participants need to produce
their utterances in a coherent and co-operative way to achieve full
communication between each other.

Maya is also responsible for keeping track of the user’s requests in
order to do ellipsis and reference resolution. The fact that Maya is
aware of the point at which the users are in the dialogue is also
important because it forces the user to finish any uncompleted
tasks, and ensures that the dialogue is always coherent.

4.2. System Interaction

An example dialogue with the Maya system is shown in Figure
2. A user request “List new messages?” produces a directed
graph output from the recogniser representing all the possible
paths through the language model which were active at the end
of the recognition stage.

This is passed to the robust parser, which produces a syntactic
representation of the network in the form of an ordered list of

“List new messages”

Recogniser

[[sent (2),[s(9),[vp(42), [verb(679), '<list>’,
nps(71), [np(83), [nbar (107), [adjgrp(131), [adj(281l),’ ' <new>'],
nouns (117), [noun (529), '<message>',plural (557),'<s>'111111111

[cmd:1list,object: [type:email, number:plural, status:new]]

s ([subj:you, verb:have, pers:2,num:sing,
tense:pres,new:count:3,
status :new,object:email])

Text
Generator

Synthesis

i

<voice=female> <s> < nomNP> you </ nomNP>
<vp> have < guantNP> <new><emp> three </ emp>
new messages </new> </ gquantNP> </ vp> </s>

“You have 3 new messages.” [«

Figure 2 Example system interaction: Email configuration

possible parses. The list is ordered using ‘higher level’ knowledge
sources than the recogniser, such as the frequency of occurrence of
words and syntactic knowledge. A combination of standard network
minimization and modified chart-parsing [5] techniques are used. The
semantics service uses these utterances to build a semantic
representation of the best possible input, which is represented as a set of
feature-value pairs. A caseframe parsing technique is used [5].

The dialogue service then evaluates the meaning of the ‘best’ utterance
in the context of the overall dialogue between the user and computer.
The current dialogue state may require the dialogue service to query one
of the information services to get information about the user’s email, or
perform some action.

The result of the user’s request will be returned by the last strategy
service, the text-generation service. Accepting feature-value pairs as its
input, this service acts in reverse to the semantics service, by using a
definite clause grammar to generate text from semantics. The output
contains additional syntactic and pragmatic information, which is used
by the synthesis service to improve the prosody of the response. In the
above example, the semantics services are able to tag the parts of the
response carrying ‘new’ information, which can then be emphasized by
the synthesis component.

5. CONCLUSIONS

This paper has presented an overview of the Maya Spoken Language
System. The architecture of the system has been specifically designed to
allow research into the individual core services and to how these
components integrate in to the system as a whole.

The system can presently be configured for task specific ‘email” style
applications. In future the direction of Maya will be towards a more
domain independent implementation, and to improving the human-
machine interface. Research in the former area will consider spoken
utterances as a part of a relevant “discourse”. The aim is to construct an
advanced semantic and pragmatic representation, taking a ‘world view’
to understand meaning in context [5]. Improvements in the human-
machine interface will investigate additional services with the intention
of ‘personifying’ the system (i.e.. through use of the ‘talking head’).

6. REFERENCES

1. Page JH, Breen AP. The Laureate Text-to-Speech System - Architecture
ard Applications. BT Technol. J:14:1.199%6.

2. Pawlewski. M, Downey S N et al. 1996 Advarices in Telephony-Based
SpeechRecognition, BT Technol.J :14:1.1996.

3. Kaneen E & Wyard. P. A Spoken Language Interface
to Interactive Multimedia Services IVTTA. 1997.

4. Breen A. P, Bowers. E, Welsh. W. An Imvestigation ito the Generation
of mouth Shapes for aTalking Head ICSI P96

5. Breen AP, Downey S N, Femandez M & Kaneen E The Maya Multi-
Modal Spoken Language Understanding System Proc. 2 Tnfemational
‘Woakshop on Human Computer Conversation, Bellagio 1998

6. Object Management Group The Cormmon Object Request Broker:
Architectre and Specification Revision 22 (February 1998)
[http://www.omgorgfeorbe/oorbiiophtm].

