A FAST METHOD OF PRODUCING TALKING HEAD MOUTH SHAPES
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described by in [1], an alternative sct of featurcs more
ADRCTD A T appropriate to the generation of visemes was devised.
AIWIJIEIINACU R

The subject of computer generated virtual characters is a diverse
and rapidly developing field, with a wide variety of applications
in industries as varied as entertainment, cducation and

M,\p\/ of these annlications rpqlnrp or would be

advertising. ese applica uire uld
greatly enhanced by having the virtual characters spcak with the
recorded voice of a real person. Such an ability is particularly
useful in applications where users are interacting via avatars in
real time in a virtual world.

There are threc basic problems which need to be addressed
when developing an interface which has this functionality:

e The process must be capable of animating mouth shapes in
real time.

e The process should not mouth extraneous sounds such as
music, doors slamming ctc. To do so would diminish the
effectiveness of the illusion.

e The mouth shapes produced by the avatar should

approximate that of the speaker.

This paper describes a series of experiments which attempt to
address each of the points outlined above. The experimental
procedurcs are based around a real time low computation
approach which relies on a pariicular varicty of neural neiwork
known as the Single Layer Look Up Perceptron (SLLUP).

1. OVERVIEW

The work described in this paper is based on the results of (wo
Sl\ llIUlllll \I.Llublll pIUJLle LUIlUULiCd at bl Lcu)\il'atuncs
aim of the projects were to investigate a means of developing a
low cost, near real time method of extracting parameters from a
speech signal which could then be used to drive a real time
talking head [3]. The mecthod based on an the concept of
intermediate representations [1].  Huckvale [1] demonstrated
that an MLP could be used to transform a speech signal into a
phonetically motivated Intermediate Representation IR. The IR
consisted of a set of binary features. (e.g. absence of speech
signal, presence of frication, presence of voicing). It was
suggested that from this intermediate representation it would be
possible to perform ecither speech synthesis or recognition.
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of neural networks (SLLUP) for feature extraction (analysis).
However, rather than using the phonetically motivated features
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Figure 1: The "Y-model” of Speech Representation Relations.
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Like all neural networks, the SLLUP can be seen as a vector
transformer, in which the transformation is learnt, as shown in
figure 2.
target output vector 4 is shown to the system at the same time.
The difference between the actual output Yand the target is
used to modify the internal parameters of the system so that the
actual becomes more like the target. This is donc using a

A training sample Xis applied to the system and a
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The vector transform performed by the SLLUP has the form
shown in figure 3. The input vector is encoded as an image of
black and white pixels formed by bits of the code representing
the scalar elements of the input. The code may be bar chart,
Gray code, binary codc or some other code. Random
connections are made onto the pixels of the image and groups

of ‘n’connections are formed into n-tunles which are used to
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address a large number of memories, the RAMs. These RAMs
themselves arc grouped into neuron blocks and the outputs of



all the RAMs.in.the 1™ block are added to form the value of the
1™ element of the output vector.

The system is trained by applying a vector to its inputs. The
connections onto the coded image of the input produces a
specific set of addresses. As an example, in figure 4, only one
3-tuple is used to address a RAM. The input presented to the
system gencrates the address "011" where each bit represents
the value of the pixel on which the connection has been made.
We can say that the address "011" has been selected.
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Figure 3: The vector transform performed by the SLLUP.

Figure 4: The “Selection” of an address in a RAM. Active cells
(shadded) are signified by a 'l", while inactive cells are signified
by '0". Hence in this example the 3-tuple conncctions result in
the address ‘011"
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The summation of the contents of each group of RAMs
produces the elements of the output vector according to the
principle depicted in figure 3. The output is then compared with
the desired output (the target) and the error vector is used to
modify the values of the currently addressed RAM locations so
that next time the same input vector is applied, the output is
ncarer to the desired output.

Repeated applications of different training vectors allows the
system to learn the required input-output mapping function. It is
important to notice that with appropriate choice of n-tuple order
and number of RAMs in each neuron block, the system can
estimate the best function to fit a rather sparse training set. Le. it
is not necessary to expose the machine to all possible input-
output vector pairs because it is able to interpolate the required
function between training points.

The SLLUP_ncural network was chosen because it has been
demonstrated [4] to have similar propertics to multilayer
perceptrons, but learns much faster and is guaranteed to
converge. It also has the advantage of being computationally
simple. However, the specific nature of the discriminator is not
important, any algorithm with similar properties to those stated
above would suffice.

3. THE EXPERIMENTS

Two sets of experiments were conducted, both used the same
general experimental procedure but differed in the training and
test set used, the type of parameterised speech data presented to
the SLLUP and the complexity of the IR produced by the
SLLUP.

3.1. Experimental 1

The first experiment attempted to derive a complex IR from a
database of clcan speech. In this experiment, the SLLUP was
presented with a vector of MFCC cocfficients. MFCCs were
considered because of their success as a feature vector within
HMM based recognition systems.

The speech database consisted of 200 phonetically rich phrases
recorded in a studio. This data was digitally sampled at 8kHz
and stored as separate files on a computer. Each file had an
associated annotation file which contained a time aligned
transcription of the utterance. The transcription system was
strictly phonemic and consisted of 42 phonemic symbols.

A nine element MFCC input vector was generated from the
speech data at a frame rate of 32ms with an overlap of 16ms.
The procedure was as follows. The sampled speech data was
divided into overlapping blocks of 256 samples. Each block
was pre-emphasized using a filter coefficient of a equal to
0.95. An FFT was then used to calculate the power spectrum
which was then organized into frequency bands according to a
series of 19 MEL scale filters. Finally, a Discrete Cosine
Transform (DCT) was performed to produced 8 MFCC
coefficients and the spectral energy.

A five feature intermediate representation was devised based on
a model of coarticulation. The five features differed from those
proposed in[1] in that they were not binary features, but could
take on a range of values as shown in table 1.

Feature labels Range
Lip (mouth rounded -» neutral = open; 0 - 0.5 — 1
shape)
Tongue 1 close = open: 0 — 1
Tongue 2 front — central —»back; 0 > 0.5 > 1
Pursing neutral = pursed; 0 —» 1
Jaw opening | closed — open; 0 — 1

Table 1: List of the five features uscd to represent the speech
signal in the IR.




Each of the five features represcnted an output from the
SLLUP. When presented with MFCC vectors, the SLLUP
would produce a constant strecam of output. These outputs were
then transformed via a lookup table into a set of visemes which
were then used to control a talking head.

For the SLLUP to train correctly. a set of target data was
needed which accurately represented the expected output from
the system. This data was generated from the annotation data
associaled with each file. Label and timing information was
used as input to a model of coarticulation derived from a
method proposed by Cohen and Massaro[6]. The output from
this model was a time varying sct of articulatory parameters.
These parameters were simply mapped onto the five features
presented in table 1. The SLLUP was trained and tested using
the parameter values shown in table 2.

Parameter Label Value
Length of the context window 3
Cocfficient of step decent 0.003
Number of RAM connections 500
Precision in the image quantification 10
Dimension of tuple 8
Dimension of the 3 window frame 27
Percentage of frame overlap 50%
Encoding Gray

Table 2: Complete list of parameter values used during the
training and testing of the SLLUP in experiment 1.

Using the training data described above, a SLLUP with the
specifications outlined in table 2, converged after only 20
iterations. Further iterations produced no significant reduction
in the RMS values.

The results suggested that while the SLLUP was able to
“remember”’ the training data, it was not able to generalize from
it. Worse still, the ability of the SLLUP to remember the
training data was related to the amount of memory uscd by the
SLLUP. In other words the SLLUP was acting as a table.

It was considered that a possible explanation for the poor
performance of the SLLUP was the type of input vector used.
MFFC’s while an appropriate transform for HMM’s may not be
the best representation for a neural network. An alternative
input vector was designed which used the 19 channel output
from the MEL scale filters in preference to the MFCC output.

Initial results using this fcature vector demonstrated that the
SLLUP was capable of learning, and that a plausible set of
mouth movements could be produced.

At this point, it was decided to take a step back and perform a
more rigorous sct of experiments on the SLLUP using more
realistic speech data and a simpler intermediate representation.

3.2, Experiment 2

As mentioned in the preceding section, the results of driving a
SLLUP with the output from a 19 channel Mel scale filter bank
produced promising results. This was in line with the
observations reported in [1]. However, these results were based
on experiments using speech recorded in a studio, produced by
a high quality microphone and with no significant extrancous
noise. In any realistic application, the performance of the
algorithm would be judged as much on its ability to ignore
extraneous noises as it would on the accuracy of the mouth
shapes produced.

A new, harsh, database was sclected which contained a high
degree of background noise. This database consisted of 4800
recordings of speakers using the UK telephone trunk network.
The data contained continuous speech (sentences), non-specch
(i.e. background noise, coughing, sneezing, etc.) and silence. A
portion of the database was set aside for testing. Due to the size
of the database the data was divided into five sub-sets labeled
(a) to (e).

The speech data was stored on a computer at 8kHz and split into
a number of data files. Each data file had an associated
annotation file, which contained a time aligned phonetic
transcription cxtended to include non-speech sounds. For the
purposes of these experiments, thc annotation data was
converted into greatly simplified descriptive set as shown in
table 3. The simplified labels also serve as the features used in
the intermediatc representation.

Original Database Labels Simplified

Labels

LIN: Silence (or noise) Silence
HIS: Periodic impulsc noise Non-speech
OTN: Other noise Non-specch

PSN: Pre/post speech noises (lip-smacks,
coughs, etc.)

Non-speech

BRT: Breath filled pause Non-speech

IMP: Impulsive noise Non-speech

EXS: Extra speech (e.g. background Speech
speaker)
All other labels are consider as speech Speech

Table 3: Table describing simplified label set.

The SLLUP was trained and tested using the parameter set
shown in table 4 unless otherwise stated.

Parameter Label Value
Length of the context window 3
Coefficicnt of step decent 0.003
Number of RAM connections 200
Precision in the image quantification 16




. Dimension of tuple 12
Dimension of the 3 window frame 57
Percentage of frame overlap 509
Encoding Bar Chart

Table 4: Complete list of parameter values used during the
training and testing of the SLLUP in experiment 2.

The result of training of on a sub-set of the database is shown in
table 5:

Number of iterations | %error (sub-set 'a’)

5 20.81

10 14.38

20 8.31

30 4.72

40 343

50 242

60 2.28

120 1.92

Table 5: Overall % error of files used during training, (step
descent 0.005, 10_tuple).

Table 5 shows that, as with experiment 1, the majority of the
training had been completed by the 20" iteration. However,
further training produced a noticeable reduction in error but
with an increase risk of over training.

The results of this experiment are shown in figure 5 as a 3x3
confusion matrix.

Silence Non- Speech
speech
Silence 13199 73 1636
Non-speech 1380 145 1394
Speech 1678 105 32725

Figure 5: 3x3 confusion matrix showing the classitication of
silence, non-speech, and speech sounds produced by SLLUP.

4. CONCLUSIONS

This paper has briefly presented the results of two experiments
designed to investigate the practicality of using a neural
network, in this case a SLLUP, as a method of extracting
featurcs from a speech signal. It was further suggested that
these features could be used as an intermediate representation
which could be further transformed into a set of visemes
necded to drive a real time talking head. Results from the first
cxperiment suggested that, provided an appropriate input

representation was uscd,  near rcal lime generation of
approximate mouth movements was possible. However, this
experiment was conducted on a limited set of training and test
data, which would not necessarily represent the type of data
observed in real applications. In addition, further research is
necded into the accuracy and acceptability of the mouth shapes
produced. The sccond experiment attempted to perform a
simpler discrimination task on a much larger body of training
data which better represented the type of speech data present in
real applications. This experiment showed that the SLLUP was
capable of learning in a very short number of iterations, with an
overall error of less than 10%. However, while the SLLUP was
able to discriminate silence and speech or non-speech sounds,
there was strong confusion when non-specch data had a long
term power spectral density and periodicity similar to speech.
Initial studies suggest that a reduction in overlap would
improve this performance. A finer classification of non-speech
sounds may also producc better results. However, a high degree
of confusion over “speech like sounds” was expected.
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