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ABSTRACT

When performing speaker adaptation there are two con-
flicting requirements. First the transform must be power-
ful enough to represent the speaker. Second the transform
must be quickly and easily estimated for any particular
speaker. Recently the most popular adaptation schemes
have used many parameters to adapt the models. This
limits how rapidly the models may be adapted. This pa-
per examines an adaptation scheme requiring very few
parameters to adapt the models, cluster adaptive train-
ing (CAT). CAT may be viewed as a simple extension to
speaker clustering. Rather than selecting one cluster, a
linear interpolation of all the cluster means is used as the
mean of the particular speaker. This scheme naturally falls
into an adaptive training framework. Maximum likelihood
estimates of the interpolation weights are given. Further-
more, simple re-estimation formulae for cluster means, rep-
resented both explicitly and by sets of transforms of some
canonical mean, are given. On a speaker-independent task
CAT reduced the word error rate using very little adap-
tation data. In addition when combined with other adap-
tation schemes it gave a 5% reduction in word error rate
over adapting a speaker-independent model set.

1. INTRODUCTION

In recent years there has been a great deal work on
adapting speech recognition systems to both acoustic envi-
ronment differences and to particular speakers. In order to
adapt large numbers of parameters with very little adap-
tation data, some compact representation of a speaker or
acoustic environment is required. There are two consid-
eration in choosing this representation. First, the repre-
sentation should be powerful enough to accurately model
the speaker or acoustic environment. Second, the trans-
form must be compact, so that its parameters may be ro-
bustly estimated using little adaptation data. A variety
of representations have been examined, for example, vocal
tract normalisation [4], maximum likelihood linear regres-
sion (MLLR) [5], constrained model-space transforms [3]
and speaker clustering. There is also the question of the
canonical model to be adapted. Originally a speaker-
independent model was commonly used as the canonical
model. Recently, since the majority of training databases
have multiple speakers or acoustic environments, the adap-
tation scheme to be used in recognition has also been used
during training. This is known as adaptive training'. By
using adaptive training it is possible to build canonical
models which only represent variability from individual
speakers rather than the variability over all speakers in
the training database.

This paper considers a new simple form of adaptive

1 Authors have also used the term adapted training.

training, cluster adaptive training (CAT). The approach
is related to speaker clustering. However in contrast to
speaker clustering where a particular cluster is selected as
the speaker model, a linear interpolation of all the clusters
is used. To simplify the estimation process the form of the
clusters 1s slightly restricted, the component weights, or
priors, and variances are tied over all the speaker clusters.
For any particular speaker a set of interpolation values, the
weight vector, must be estimated. This weight vector is re-
lated to the soft regression class weight vectors described
in [2]. Having selected the transform for a speaker, the
form of the cluster means must be chosen. This paper
considers two forms. The first is an explicit set of means
per cluster. Alternatively, cluster dependent MLLR trans-
forms of some canonical model may be used. In both cases
simple closed-form maximum likelihood (ML) estimation
formulae are given. In addition a Bayesian interpretation
of the weights estimation process is described. This yields
a simple posterior distribution for the weights, which may
in theory be used in the recognition process, allowing in-
stantaneous speaker adaptation.

This paper is organised as follows. The next section
describes the basic form of CAT and the overall training
strategy. The following section describes how the weight
vectors may be estimated in an ML fashion. The esti-
mation of both model-based and transform-based clusters
will then be described. A Bayesian interpretation of the
welght estimation process is also described. Results on a
speaker-independent large-vocabulary task will be detailed
and conclusions drawn.

2. CLUSTER ADAPTIVE
TRAINING

CAT is a simple extension to the standard speaker clus-
tering scheme. Rather than assuming that the speaker be-
longs to one of a set of distinct speaker classes, the speaker
model parameters are determined by a linear combination
of cluster means. The Gaussian component variances and
weights are assumed to be the same across all speaker clus-
ters.
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Figure 1: Cluster adaptive training

CAT is shown diagrammatically in figure 2. The op-



tional “dotted” cluster, mean b, always has a weight of 1.
This may be used to represent any speaker-independent
aspects of the mean vectors. By including a bias clus-
ter an additional cluster may be used without increasing
the number of parameters to be estimated for a particular
speaker. For a particular component mean belonging to

weight class r, m € M(T), the speaker mean is given by
ﬂ(M) — M(m™H(M (1)
where there are P clusters,

M™ = [ #(ml) #(mP) ] (2)

uw{™) is the mean of Gaussian component m associated

with cluster p and the extended weight vector is given by
L L kd T

A = [ A A1 (3)

The training scheme for CAT is similar to other adaptive

training schemes [1]. The training is performed in two
stages.

1. Estimate the values of the weight vectors for each
speaker in the training data, given the current esti-
mate of the cluster parameters.

2. Estimate a new set of clusters given the weight vec-
tors.

The procedure is then repeated until some convergence
criterion 1s satisfied. During testing a weight vector is
estimated for each new speaker and a new mean calculated
for decoding.

3. CLUSTER WEIGHT VECTORS

The ML estimate of the interpolation weight for each
cluster is similar to transformation smoothing [2]. It can
be shown that the weight vector associated with weight
class r is

A = g1kl (4)
where
GP = > am(MMTEmiM) (5)
mGM("),T
K = )" MR Ny (r)e(r) (6)
meM(") T

and m(7) is the posterior probability of Gaussian compo-
nent m at time 7. If the extended weight vector is used
then, since there is a fixed value, only p — 1 weights must
be estimated. A similar estimation scheme is used, except
that equation 6 is replaced by

K = 3 MOIEI Y (r)e(r) - k7P ()
meM(") T

The standard “hard” speaker cluster may be simply ex-
pressed using the same expressions,

A — arg max {kg;?,, — %g&?np (8)
P

where A(™) is now an indicator variable to denote which
cluster.

4. CLUSTER PARAMETERS

This paper considers two representation of the speaker
cluster means. The first is a set of means for each cluster,
the second some cluster dependent linear transformation of
some canonical means. This section details the estimation
scheme for both the cluster means and the cluster inde-
pendent Gaussian component weights and variances. For
both the model-based and cluster-based representations of
the cluster, the same sufficient statistics are required to es-
timate the cluster parameters. These are (assuming that

GOm =) " ACEITy () (9

s, T

K™ = Z'ym(r))\(”)o(T)T

s, T

(10)

S0 =37 3m(r)e(r)o(r)"

s, T

(11)

and the number of frames assigned to that particular

Gaussian component. A(*") is the weight vector for weight
class 7 of speaker s. If diagonal covariance matrices are

to be used, then it is only necessary to store diag (S(m)).

Diagonal covariance will be assumed for the rest of this
paper. The total memory requirement for the cluster es-
timation for an n-dimensional feature vector, M Gaussian

components and P clusters is M(P2 + Pn+n+1) floats.

4.1. Model-based clusters

The estimation of the cluster means is a simplification
of the soft MLLR transform estimation scheme described
in [2]. The set of mean vectors may be estimated using

(12)

where G(™) and K(™) are defined in equations 9 and 10.
The variance may be shown to be

(m) _ MK (™)
2™ = diag <S MK >
D ¥m(T)

and the component weights are given by

(m) _ Es,'r ’ym(T)

Es,nes("") T 'Ym(T)
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(13)

w
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where S0 is the set of components in the same state as
component m.

4.2. Transform-based clusters
When the clusters are to be represented as MLLR trans-
forms of some canonical model an iterative estimation
scheme is required. The mean of Gaussian component m
of cluster p is now [5]
pwlm?) = APD () 4 p(pa) — y(rp)e(m) (15)
where S(m) is the extended mean vector of the canonical
model. Given some initial estimate of the canonical model
and the fixed weight vectors associated with each speaker,
the training process is as follows.



1. Estimate the set of MLLR transforms given the es-
timate of canonical model and the training speaker
weight vectors.

2. Estimate the canonical model given the set of MLLR
transforms and the weight vectors.

This is repeated until some convergence criterion is sat-
isfied. This form of representation is related to speaker
adaptive training (SAT) [1]. However in contrast to SAT a
fixed number of training “speakers”, or clusters, are chosen
with the added flexibility of interpolating between speak-
ers. The fixed, usually small, number of clusters has some
advantages, First, the re-estimation formulae become far
easier as the statistics may be stored at the cluster level.
Second, the amount of data associated with each cluster is
far greater than that associated with the average training
speaker. It is therefore possible to use many transforms to
represent the cluster. Furthermore in CAT only interpola-
tion weights are estimated for a new speaker, rather than
a new estimate of a transform as in SAT.

MLLR transforms. The estimation of the transfor-
mation parameters is similar to the linear transform op-
timisation described in [2]. All the transforms may be
simultaneously estimated, however this involves inverting
a large P(n 4 1) square matrix per dimension. A simpler
iterative approach is possible. Considering only one of the
clusters, it is simple to estimate the transform parameters,
given the other cluster transforms. Row 2 of the transform
class g of cluster p is found to be

W(Pq) k(PQ”')G(PQ") 1

(16)

where

G(tPQ): Z ;P) (m)zg( )5( )T (17)

meM(a) 2
k(P = (18)
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Here the Gaussian components have been grouped into
transform classes, which may differ from the weight classes
used in the weight vector estimation. To update all the
transforms, it is necessary to iterate around all the trans-
forms, estimating each transform, given all the others.

However, since GS‘Pqi) is independent of the current es-

timate of the transform it need only be inverted once, so
the process is quite efficient.

Canonical Model Estimation. There is now the issue
of estimating the canonical means which are transformed
by the cluster dependent transforms. The estimation of
the means is slightly more complex than the model-based
mean estimation and is again closely linked to the SAT
re-estimation formulae. The mean is found by

—1

#(m) — Zgg‘;{”)A(iQ)Tz(m)—lA(J’q) (19)
%]
ZA(iQ)E(m)—l kEm)T _ Zgg{n)b(iQ)
g J

assuming that Gaussian component m is in transform class
g (m € M(Q)). Similarly the expression for the variance

may be rearranged as

S(m) —9 Ez kEm)#(smz)T

Do s Ym(T)

gE;n) (smi)#

Yer Im(T)

The Gaussian component weight estimates are the same
as for the model-based cluster scheme. The estimation
of the mean is thus a function of the variance and vice-
versa. The optimisation of the parameters is an iterative
procedure, optimising the means and then the variances
and repeating.

5. BAYESIAN INTERPRETATION

=™ = diag

(smi)T

(20)

To achieve very rapid adaptation, the adaptation para-
meters must be estimated on very little data. In these
situations the ML estimate may be a poor estimate of the
actual parameters. Furthermore even taking a maximum
a-posterior: estimate of the transform parameters may be
poor, since the variance on the estimates will be large. In
these cases it would preferable to deal with the posterior
distribution of the transform parameters rather than a sin-
gle value. This involves making some assumptions about
the prior distributions and the distribution of the observa-
tion parameters. Assuming that the prior distributions are
Gaussian distributed and the observations are drawn from
Gaussian distributed sources of variance? oX{™ then the
posterior distribution of the transform parameters may be
shown to be Gaussian with mean given by (assuming a
single weight class)

G -1k
2 = ( Gw | sm- 1) (?erE(p)—l#(p))
and having variance

s _ (Gw+z(p) 1)

(21)

(22)

where the prior distribution has mean /L(P) and variance
=(P)® With non-informative priors the mean of the dis-
tribution becomes the standard ML estimate as expected.
Now the likelihood of the data for a given word sequence,
W, is given by

p(O7|W) = (23)

/Z [ (e, 8(r)) | p(©11, W)p(2)dA
orT T

where @7 is the set of possible valid state sequences of
length T and X is the transform parameters. Although
in theory this approach allows instantaneous adaptation,
within the assumptions that the distributions of the trans-
form parameters are appropriate, there are a number of
issues that need to be solved. First there are no simple
closed-form solutions to the calculation of the likelihood.
Furthermore, to be as effective as possible sufficient statis-
tics for the posterior distribution for every path hypothe-
sised by the decoder should be stored. This dramatically
increases the memory requirements during decoding. This
approach will be investigated in future work.

2The additional term « is added to give a similar concept to
the MAP 7 factor.

3In practice the prior is liable to be multi-modal, the most
obvious modes being “male” and “female”.



6. RESULTS

The task used to evaluate the CAT system was an in-
ternal IBM task. It is a speaker-independent task using
read speech data recorded in clean environments with the
same microphone. There are 1670 speakers in the training
data with a total of 36272 training sentences. A state clus-
tered decision tree system was used throughout with 2755
states. The test set consists of 9 speakers, each uttering
61 sentences giving a total of around 10,000 words in the
test set. A trigram language model was used in all tests.
Two basic model sizes were considered. The first used four
Gaussian components per state and the second an average
of 12 Gaussian components per state. The weight vectors
were estimated in a supervised adaptation mode using 20
adaptation sentences. A single weight class was used for all
experiments. In preliminary results the use of many weight
classes was found to give little gain in performance.

Number Gaussian | Number of || Word Error

Components Clusters Rate
— 15.1

4 1(+1) 12.9

8 12.3

— 12.6

12 1(+1) 11.7

8 11.5

Table 1: Comparison of the baseline systems wit the CAT
systems

Table 1 shows the performance of the baseline CAT sys-
tems. Two forms of model-based cluster CAT were exam-
ined. The first used two clusters with one cluster being
used as a bias cluster, I (+1). Thus, there was only a
single free parameter. The second used an eight cluster
system with all cluster weights depending on the speaker,
8. As expected the standard SI four Gaussian component
system performed significantly worse than the 12 Gaussian
component system. In both cases the use of CAT reduced
the word error rate.

An alternative to the soft use of clusters the standard
hard clustering scheme may be used. A four Gaussian
component system with hard cluster selection was built
with two clusters. The word error rate was 13.4%. This
may be compared with the 1(+1) soft clustering scheme
which had a word error rate of 12.9%. As more clusters are
used the differences between the hard and soft clustering
should become larger.

Number Gaussian | Number Type of Word Error
Components Clusters Clusters Rate
4 1(+1) model 12.9
transform 13.3
1(+1) model 11.7
12 transform 11.8
8 model 115
transform 11.3

Table 2: Comparison of transform and model clustering

Table 2 compares the performance of model-based and
transform-based clusters. For the transform based clusters
32 full MLLR transforms, with acoustic-space clustered
transform classes, were used. For small numbers of clusters
the model-based schemes outperform the transform-based
schemes. This is not surprising since for the 4 Gauss-
ian components there is almost an order of magnitude re-
duction in the number of parameters used to represent a

cluster. This reduction in the number of parameters be-
comes important as the number of clusters increases. Us-
ing the 12 Gaussian component system with 8 clusters, the
transform-based clusters slightly out-performed the model-
based clusters. This illustrates the ability to use more
clusters with a transform-based clusters than model-based
ones, since there are fewer free parameters to estimate from
the training data.

One of advantages of CAT is that few parameters are
used to adapt the models. Using only a single sentence
to estimate the weight vector there was no degradation in
performance for the 1(+1) cluster system for both the 4
and 12 Gaussian component systems. However a degrada-
tion in performance was observed for the 8 cluster system.
For example the 4 Gaussian component system had a word
error rate of 12.9% using a single entence to estimate the
weight vector. Thus, for very little adaptation data the
number of clusters must be restricted, or the Bayesian in-
terpretation used.

CAT models may also be used as the canonical models in
conjunction with other transforms. The 12 Gaussian com-
ponent CAT 1(+1) system was used for adaptation with a
single global constrained model-space transform and mul-
tiple MLLR transforms estimated on 50 adaptation sen-
tences. This yielded a word error rate of 9.4%. This can
be compared with using a standard SI model as the canon-
ical model with the same linear transformation, though of
course no cluster smoothing, which gave a word error rate
of 10.0%. This performance gain is roughly consistent with
using other adaptive training schemes.

7. CONCLUSIONS

This paper has introduced a new form of adaptive train-
ing, cluster adaptive training. The scheme uses a very sim-
ple representation of a speaker, a weight vector to smooth
a set of cluster means. Two forms of cluster representation
are described. The first uses sets of means themselves. The
second, a far more compact representation, uses a canon-
ical mean and MLLR transforms of that canonical mean
to represent the cluster. Re-estimation formulae are given
for both the weight vectors and the cluster parameters.
Both forms of cluster are found to reduce the word error
rate. The use of CAT in combination with other linear
adaptation schemes shows gains over adapting speaker in-
dependent models.
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