BAYESIAN CONSTRAINED FREQUENCY WARPING HMMS
FOR SPEAKER NORMALISATION

L2 Ching-Hsiang Ho

' Saeed Vaseghi

" Aimin Chen

"The Queen’s University of Belfast, Northern Ireland
? Fortune Junior College of Technology and Commerce, Taiwan, R.O.C.

ABSTRACT

This paper presents a Bayesian constrained frequency warping
technique. The Bayesian approach provides for inclusion of
the prior information of the frequency warping parameter and
for adjusting the search range in order to obtain the best
warping factor dependent on HMMs. We introduce novel
frequency warping (FWP) HMMs which are different warped
versions of HMMs. Instead of frequency warping of the input
speech we warp the spectrum of the HMMs. This is equivalent
to HMMs which have both time and frequency warping
capabilities.  Experimentally FWP HMMs outperform the
conventional constrained frequency warping approach.
Furthermore, the best warping factor is estimated in two
stages, a coarse stage followed by a fine stage. This method
efficiently gauges the optimal warping factor and normalises
the FWP HMMs.

1. INTRODUCTION

A major source of inter-speaker variability in hidden Markov
model (HMM) based recognition is due to the variations of
shape and length of the vocal tract among different speakers.
Vocal tract variability results in a broadening of speaker
independent HMM probability models and a mismatch
between the distributions of the training utterances and test
data. The effect of vocal tract length variation is a shift in the
spectrum of the speech. In [2] two simple vocal tract models
are considered, the uniform tube and the Helmholtz resonator.
In the uniform tube the formant frequencies of utterances for a
given sound are inversely proportional to the length of the
vocal tract. The scaling of the formant frequency in the
uniform model is consistent with linear frequency warping.
However, in the Helmholtz resonator model, a good
approximation for the closed front vowel, the formant
frequencies are inversely proportional to the square root of the
vocal tract length. Furthermore, the higher frequency regions
for these vowels show more sensitivity to the variation of the
vocal tract length. Therefore, the scaling of the frequency axis
imposed by a change in vocal tract length is dependent on the
configuration of the vocal tract (the phoneme) and also the
frequency regions.

Recently, several maximum likelihood based frequency
warping procedures have been proposed to reduce the speaker

dependent variability via front-end signal processing
[11[2][3][4]. These frequency warping methods linearly or
nonlinearly re-scale the frequency axis to reduce the variations
between formant frequencies. A maximum likelihood
estimation is used to find the optimal warping parameters
which maximise the likelihood between a set of reference
statistical models and the input utterances. Since the warping
transformation is employed in the front-end stage, it is hard to
find a closed-form solution for the ML criteria. Therefore, a
grid search is used to exhaustively search the optimal warping
parameters over an extended space of utterances.

In this paper, a Bayesian constrained frequency warping
method is presented where the prior information of the warping
factor is incorporated to efficiently search for the optimal
factor. Firstly, a by-product of the iterative normalisation
procedure in training is a set of probability models for the
distribution of the frequency warping parameters for each
HMM. These probability models are then employed for a
Bayesian speaker normalisation of the training and the test
data.

In a second approach to Bayesian frequency warping, instead of
warping the input speech, frequency warping (FWP) HMMs
are employed to model the vocal tract variations. FWP HMMs
are a set of extended HMMs where each HMM is associated
with a range of warping parameters and are estimated by
maximising the likelihood of the extended observations. The
best warping factors for the input speech can be obtained by
searching FWP HMMs over all utterances. It is equivalent to
HMMs which have both time and frequency warping
capabilities.

Furthermore, the two methods above are combined in a two-
step iterative procedure to implement the Bayesian constrained
frequency warping. In this procedure the most likely range for
the warping parameters is firstly estimated by searching FWP
HMMs. Then, the optimal warping factor is estimated within
the optimised constrained range. Therefore, both the efficiency
of the HMM search and the precise warping of the
observations are encapsulated in the novel approach.

In Section 2 the maximum likelihood based frequency warping
is described. Section 3 proposes Bayesian constrained FWP
HMMs. In Section 4 a novel efficient frequency warping
technique is presented. Section 5 presents some experimental
results. Section 6 concludes this paper.



2. ML BASED FREQUENCY WARPING

The maximum likelihood based frequency warping [2][3][4] is
a vocal tract normalisation approach using HMM based speech
recognition. The advantage is that it is easy to incorporate this
frequency warping method into an automatic speech
recognition system.

During both training and recognition, the optimal linear
frequency warping factor is estimated by maximising the
likelihood of the utterances with respect to a set of given
HMMs. Suppose that O; denotes a set of utterances spoken by
speaker i, S; denotes the corresponding state sequence
transcriptions for the utterances, and [A] denotes a set of
HMMs. The optimal warping factor, ¢ , is estimated from a
set of N discrete values within a constrained range and defined
as

o?:argmaxP(O,-|oc,/l,S,-) (1
o

Since finding a closed-form solution for Equation 1 is a
nontrivial exercise, a grid search procedure is used. The
procedure is shown in Figure 1 and is described as follows:

1. For an utterance O;, given a set of HMMs, [A],
the ML state sequence transcription, Si, is
obtained using the Viterbi search.

2. N sets of warped utterances are obtained by
warping the utterance, O;, using a set of N
discrete warping factors, oy to oy,.

3. Each set of warped utterances from Step 2 is
aligned with the corresponding state sequence
transcription, S;, from Step 1 while the joint
probability of all frame vectors is obtained from
the pdfs of the mixture states.

4. The best warping factor is the one which
maximises the likelihood of the corresponding
set of warped utterances.
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Figure 1: The grid search procedure

The goal of the training procedure is to reduce the inter-
speaker variability by warping the frequency scale of the
utterances. A set of narrower distributions is obtained by
retraining the normalised utterances. During recognition, the
optimal warping factor estimated by the same MLE procedure
is used to remove the mismatch between the normalised
HMMs and the test utterances. The training and testing
procedures are described as follows.

Training procedure:

1. The MLE is used to estimate the best warping
parameters.

2. All training utterances, warped by the optimal
warping factor, are then used as the retraining
database.

3. The retrained models are called normalised
models.

4. This procedure is iteratively executed until a
certain convergence condition is achieved.

Testing procedure:

1. The MLE is used to estimate the best warping
parameters.

2. All test utterances warped by the corresponding
optimal warping factors are then recognised
against the normalised models.

3. BAYESIAN CONSTRAINED FWP

The development of the Bayesian constrained frequency
warping method can be described in three stages. Firstly, the
prior information of the warping factor is investigated.
Secondly, a more representative statistical model and efficient
search of the warping factor is presented. Thirdly, we combine
the two methods mentioned above to obtain a more optimal
solution.

3.1. Constrained Bayesian Methods

In this section we propose several constraints and prior
information of the warping factor for developing constrained
Bayesian approaches.  The conventional ML frequency
warping method iteratively uses the exhaustive search to
estimate the optimal warping factor. However, some useful
information about the warping factor is ignored. In order to
make the search more optimal, we try to incorporate the prior
pdf of the warping factor for each HMM. Thus, the maximum
a posteriori estimation for the warping factor is obtained by
solving

¢ = argmax P(o|oc,/lA)P(a|/lA) 2)

o

where the distribution of the warping parameter is incorporated
into Equation 1 as a priori information.



The simplest case is the ML based frequency warping. In the
grid search the vocal tract variation which is within 25% is
used as the prior knowledge to constrain the warping factor. In
this case the prior is an uniform pdf within the grid search
range. However, in a gender-unbalanced training database,
such as TIMIT, the mean of the warping factors is biased so
that it is inappropriate to use a fixed search range. By
incorporating prior knowledge of the warping factor, the search
range becomes adaptive. Besides, since the distribution of the
warping factor is not uniform, the step size can be made
adjustable using the prior probability distribution.

Based on the parametric model of the vocal tract [1], the
warping factor is a linearly scaling factor between the change
of the vocal tract length/shape and the variation of the formant
frequencies. Under this condition the warping factor becomes
phoneme dependent. To take advantage of the characteristics
of the distribution of the warping factor for each phoneme, the
distribution is incorporated as the prior pdf. Although there is
a certain amount of information associated with the
distribution of the warping factor and an improvement is
attained, a more informative model of the warping factor is still
needed.

3.2. Frequency Warping HMMs

FWP HMMs are proposed and incorporated to model the
warping factors. FWP HMMs are a set of extended HMMs,

[/{a' ]. Given a set of reference HMMs, [/la' 1, FWP HMMs
are estimated by maximising the likelihood of the extended

. A
observation sequence, o , as

% = arg max P(oA
2
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where A denotes the whole discrete set of warping factors.
Thus, the optimal warping factors for input utterances can be
estimated by

o =arg max P(o|/lA"") 4

o

where the Forward-Backward algorithm or Viterbi decoder can
be used.

A training procedure for Equation 3 is developed in which
FWP HMMs are obtained by using all training utterances and
their extended versions.  The extended utterances are
generated by warping the training utterances using the set of
warping factors. The procedure is described as follows:

1. To generate the extended training utterances, the
frequency scale of all training utterances is
warped by a discrete range of warping factor.

2. The state sequences of the unwarped utterances
are obtained by forced-alignment where a set of
HMMs is given. The set of HMMs can be SI
HMMs at the beginning or FWP HMMs during
the training iterations.

3. The segmental labels obtained from Step 2 are
applied to all the corresponding warped
utterances.

4. The optimal warping factor for each phone
segment is estimated by maximising the
likelihood of the observation sequence, given SI
HMMs or FWP HMMs.

5. Each phone in the extended training utterance is
re-labeled by a new name which is the original
name attached with the estimated warping factor
of the segment from Step 4.

6. Using the Baum-Welch algorithm, FWP HMMs
are estimated by maximising the extended
training utterances. For each phone model of
the initial SI HMMs a set of warped models are
obtained.

7. The further training iteration can be used to
optimise the FWP HMMs.

3.3. A Novel Warping Factor Estimation

According to the experimental results of the ML based
frequency warping, the supervised frequency warping is better
than the unsupervised case particularly when warping in the
subword segment. In supervised normalisation the phone
transcriptions are employed during the estimation of the state
sequence. However, as we warp utterances frame by frame in
the supervised case, the recognition rate increases slightly but
the accuracy is degraded. It seems that an improvement can be
achieved if we use soft segmentation instead of hard
segmentation in frequency warping training. Therefore, before
searching for the optimal warping factor, we incorporate the
FWP HMMs search to estimate a coarse factor.
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Figure 2: The warping factor estimation algorithm

The iterative procedure for the novel warping factor estimation
is shown in Figure 2 and described as follows. We define a



coarse warping factor, ¢, , and a fine warping factor, o .

The optimal warping factor, ¢ , is obtained by adding the two
factors together as in Equation 5. The optimal coarse warping
factor, @, , defined as Equation 6, is estimated by maximising

the likelihood of the observation sequence, X, given FWP
HMMs,
estimated by maximising the likelihood of the observation

sequence, X %, given estimated FWP HMMs, A%, as
Equation 7.

A% . The optimal fine warping factor, &f , is

G=6,+6 5)

o, = argmaxP(XM“r ,og,.) 6)
ar

&f :argmaxP(Xaf |l&r,af] @)
o

During training, the optimal warping factor is estimated using
the new warping factor estimation procedure. During testing,
the normalised FWP HMMs can be employed to recognise the
test utterances without predetermining the warping factors for
the utterances.

4. EXPERIMENTS

To study various characteristics of the warping factor, we
investigate the frequency warping of different segments.
Generally speaking, when the warping factor varies across a
smaller segment, the normalisation contributes a better
performance.

Experiments were based on the TIMIT speech database using
monophone HMMs. The speech features consisted of 13
MFCCs supplemented with the 1st and 2nd differentials. The
constraint of linear frequency warping factor is from 0.88 to
1.12 with steps of 0.02. With a single Gaussian per state the
baseline recognition rate is 58.10%. Table 1 and 2 compare
recognition results with respect to different warping segments.
These are the observations from each speaker (SPWF), each
sentence (SEWF), each phone segment (PHWF) and each state
segment (STWEF). Firstly, the supervised (S) normalisation
results in a better performance than the unsupervised (U)
normalisation.  Secondly, when the warping factor varies
across the sub-word segment, the improvement is significant.
It shows that frequency warping factor is speaker dependent as
well as phoneme dependent. Thirdly, since using supervised
normalisation for SPWF does not improve recognition rate, it is
likely that the model alignment is less important when the
warping factor is speaker dependent only.

Table 1: Normalisation in recognition
( 1 Gaussian per state )

SPWF SEWF PHWF
S 58.24% | 58.92% 60.95%
U 58.20% | 58.73% 58.28%

Table 2: Normalisation in 1-iteration training and
recognition with 1 Gaussian per state

SPWF SEWF PHWF STWF
S 58.53% | 59.77% | 61.97% | 62.52%
U 58.49% | 58.56% | 59.48% | 58.90%

In Table 3 the 8 Gaussian multi-mixture HMMs contribute
significant improvement when the normalisation procedure is
incorporated into recognition (R) and also the HMM training.

Table 3: Normalisation with 8 Gaussian per
state and PHWFs
BASE R T+R
S 69.33% 69.41% 71.14%

Table 4 shows that the HMMs obtained from supervised
training are inappropriate to the unsupervised recognition.

Table 4: S/U Training + S/U Recognition
U+U S+S S+U
59.48% 61.97% | 58.79%

PHWF

When we apply the FWP HMMs to the normalisation, the
recognition rate is 60.97%. It shows that, compared to the
S+U normalisation using ML frequency warping, FWP HMM
search contributes a significant performance.

5. CONCLUSION

The Bayesian constrained frequency warping approach
contributes significant improvements both in efficiency and
recognition. FWP HMMs have been successfully employed in
the estimation of the frequency warping factor and have
improved S+U normalisation by 2%. Also during recognition
the search for the phoneme sequence and warping factor can be
done simultaneously without warping the input speech. In
addition, the novel warping factor estimation procedure will be
used to efficiently and precisely to estimate the optimal
warping parameters and the normalised FWP HMMs.
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