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ABSTRACT

Recovering vocal tract shapes from the speech signal is
a well known inversion problem of transformation from
the articulatory system to speech acoustics. Most of the
studies on this problem in the past have been focused
on vowels. There have not been general methods effec-
tive for recovering the vocal tract shapes from the speech
signal for all classes of speech sounds. In this paper we
describe our attempt towards speech inverse mapping by
using the mel-frequency cepstrum coeflicients to represent
the acoustic parameters of the speech signal. An inver-
sion method is developed based on Kalman filtering and
a dynamic-system model describing the articulatory mo-
tion. This method uses an articulatory-acoustic codebook
derived from Maeda’s articulatory model.

1. INTRODUCTION

Estimation of articulatory positions and movements from
speech acoustics is commonly called inverse mapping in
speech research, as it is an inverse of the natural transfor-
mation from articulators to speech acoustics. The main
difficulties of the acoustic-to-articulatory mapping are due
to the nonlinear and one-to-many characteristics of this in-
verse transformation. Some of the approaches to speech in-
version have used an analytical nonlinear function for mod-
eling the articulatory-to-acoustic transformation, whereas
others used articulatory-acoustic codebooks derived from
articulatory models or measurements of articulatory and
acoustic parameters from human beings. There were many
attempts of estimating the vocal tract shapes from the for-
mant frequencies of the speech signal, but these parameters
are not representative for all classes of speech sounds. The
non-unique solution of the acoustic-to-articulatory map-
ping have motivated researchers to find optimal articula-
tory trajectories and vocal tract shapes by imposing dy-
namic constraints.

The inverse mapping in speech is a difficult and unsolved
problem. Satisfactory solutions to this problem will have
both theoretical and practical significance. It would help
the motor theory of speech production, the articulatory
phonology and have applications in speech and speaker
recognition, speech synthesis, speech coding and teaching
deaf people to speak.

Among the first researchers who approached this problem
were Mermelstein and Schroeder who proposed methods of
estimating the area function from formant frequencies [5].
Sondhi and Gopinath proposed a method of determina-

tion of vocal tract shape from impulse response at the lips
[12]. A new method using the inverse filtering of the acous-
tic speech waveforms has been suggested by Wakita [14].
Shirai and Honda studied the estimation of articulatory
motion using an articulatory dynamical model and nonlin-
ear filtering [11]. They have used a nonlinear observation
function relating the formant frequencies to articulatory
parameters.

A theoretical study of speech inversion has been done by
Atal et al. [1], using a computer sorting technique. They
studied the acoustic-to-articulatory relationship by sam-
pling the whole space of an articulatory model and creating
the articulatory sets of vectors called fibers which map into
the same acoustic vector. A study of estimation of artic-
ulatory trajectories using Kalman filtering has been done
by Wilhelms et al. [15]. They used as acoustic features the
short time spectra and experimented the method on vowels
and some limited consonants. Schroeter et al., [9] proposed
a method of estimating the articulatory parameters using a
vocal tract/cord model and an articulatory-acoustic code-
book. In that study they have used the LPC parameters
as acoustic vectors and sampled the articulatory space be-
tween pairs of root shapes. This work has been extended
later to a multi-frame approach. More recently, Schroeter
and Sondhi [10] presented a method based on dynamic pro-
gramming to search the articulatory codebooks. They have
used the LPC derived cepstral coefficients as acoustic fea-
ture and introduced a lifter in computation of the acoustic
distance and a dynamic cost in making a transition from
a vocal tract shape to another one. Papcun et al. [6]
further studied the inversion problem with a neural net-
work trained on X-ray microbeam data. An optimization
method based on conditional minimum efforts has been
used by Sorokin [13] for determination of vocal tract shape
for vowels from formant frequencies.

Ramsay and Deng [7] proposed a stochastic target model
for estimating the articulatory parameters. They used
the EM algorithm for estimating model parameters and
Kalman smoothing to estimate the articulatory states. An-
other work using the dynamic programming search has
been presented by Richards et al. [8]. They attempted
to estimate the articulatory representation of speech using
the cepstral coefficients and a codebook derived from the
Distinctive Regions Model. A method of recovering articu-
lator positions from acoustics based on human articulatory-
acoustic data has been published by Hogden et al. [4].
They have used a vector-quantization method to build dif-
ferent articulatory-acoustic codebooks.



Improving our earlier method for estimating articulatory
parameters from formant frequencies using the Iterated Ex-
tended Kalman filtering technique [3], we in this paper de-
scribe our new experiments on recovering vocal tract shape
and its dynamics for vowels using the mel-frequency cep-
strum coeflicients (MFCC) as the acoustic measurement.
The main contribution of this paper is selection and cre-
ation of articulatory-acoustic data and the implementation
of filtering and smoothing techniques.

2. ARTICULATORY MODEL

In order to use the Extended Kalman Filtering we lin-
earized the articulatory-to-acoustic function on small re-
gions using an articulatory-acoustic codebook. To create
this codebook we have used the Maeda’s static articulatory
model built by statistical analysis of X-ray films of a French
female speaker. This articulatory model constructs the vo-
cal tract shape from eight linear components representing
the jaw, tongue body, tongue dorsum, tongue tip, lips and
hight of pharynx. From these parameters the vocal tract
area function is computed and a lossy vocal tract model
transforms the area function into the vocal tract transfer
function. We used an all-poles model of the vocal tract
transfer function.

3. ARTICULATORY AND
ACOUSTIC DATA

Our main idea for the acoustic-to-articulatory mapping
is to use low dimensional parameters whose components
are orthogonal to represent both articulatory and acoustic
vectors. In this work we have chosen the Maeda’s artic-
ulatory parameters (which are orthogonal to each other
and explain most of the vocal tract data variance) and the
MFCC parameters (constructed from orthonormal func-
tions). The articulatory-acoustic nonlinear function h re-
lating the articulatory vectors x to the acoustic vectors y
is defined by the equation: y = h(x). This analytical func-
tion is of many-to-one type and practically has been proved
to be so by many articulatory compensation experiments.
For this reason we did not create, as in other studies, an
acoustic-articulatory codebook to search for each acous-
tic frame the closest acoustic entry in the codebook and
get the corresponding articulatory parameters describing
the recovered vocal tract shape. Instead, we created an
articulatory-acoustic codebook in which many possible en-
tries of articulatory parameters map into the same acoustic
vector. In this way we allow each acoustic frame to be pro-
duced by different vocal tract shapes, as in natural speech
this occurs due to compensatory articulation. The selec-
tion of the optimal vocal tract shape from all candidate
shapes has been done introducing dynamic constraints by
the dynamical model.

The articulatory parameters used to construct the (x,y)
pairs of the codebook were the eight articulatory model
parameters, whereas for the acoustic parameters we used
the MFCCs. It is well known that the MFCCs are among
the best acoustic features used in automatic speech recog-
nition. The MFCCs are robust, contain much information

about the vocal tract configuration regardless the source of
excitation, and can be used to represent all classes of speech
sounds. We devised a method of computing the MFCC pa-
rameters using a filterbank from both speech signal and
vocal tract shape. This is because in our analysis-by-
synthesis procedure we have to minimize the acoustic dis-
tance between the measured speech spectra and the model
speech spectra. In both cases, from the all-poles LP mod-
els we computed the log energy spectrum and then applied
it to a filterbank composed of critical band filters. The
outputs of these filters were used to compute the MFCCs
after multiplication with some orthonormal functions. We
used 10 low-order MFCCs, not including the zero-th order
that represents the log energy.

In our previous work, [3], we have created an articulatory-
acoustic codebook only from middle vowels, and the tran-
sitions to and from vowels were not accurately modeled. In
the current work, we constructed a separate articulatory-
acoustic codebook by randomly sampling the articulatory
space. The initial data points in the sampling represent 392
open vocal tract shapes selected from a total of 519 shapes
from which the Maeda’s articulatory model has been built.
Subsequently, we created for each of the 392 original vocal
tract shapes many vocal tract shapes which map approxi-
mately into the same acoustic vector as the original shape
does. These simulated shapes can be very different and
their corresponding vocal tract transfer functions are not
exactly the same. Hence a fine covering of the acoustic
space of this codebook has been accomplished. The en-
tire articulatory-acoustic codebook we have created con-
tains a total of 235,000 pairs of articulatory and acoustic
vectors. The histograms of the 235,000 articulatory vec-
tors (8 dimensions) from the codebook are shown in Fig.
1. The corresponding histograms of the MFCC vectors
(10 dimensions) are shown in Fig. 2. This codebook is
used to characterize the nonlinear function h, which is lin-
earized on many small regions using a clustering algorithm
and a vector quantization (VQ) technique. The result of
the VQ-clustering gives a total of 10,000 piecewise-linear
regional models, which jointly approximate h. For train-
ing the model parameters and recovering the vocal tract
shapes we have used vowel tokens from TIMIT database
and articulatory-acoustic data recorded with an electro-
magnetic midsagittal articulograph (EMMA).

4. METHODS

For estimating the dynamical model parameters we imple-
mented the same method as in [2, 7]. We have used the
Expectation-Maximization (EM) algorithm for ML estima-
tion of model parameters. To model the dynamics of the
articulators we used second-order critically damped linear
models. These can be augmented to the first order state
equation:

Xip41 = Fxp + wy (1)
where F is the transition matrix and w is a white Gaussian

noise with covariance matrix Q. By expanding the nonlin-
ear function h(x) in a Taylor series about a reference Xy,



Figure 2: Distribution of acoustic vectors

as in [11], we obtained the linearized output equation:
yi =h(%e) + H(Xx)(xx — Xx) + Vi (2)

where H is the Jacobian matrix of h and v is a white Gaus-
sian noise with covariance matrix R. The two processes w
and v are supposed to be uncorrelated. For each linear
region a matrix H and a mean acoustic vector has been
computed. Because of the nonlinearity in the function h,
the conditional probability of articulatory states x given
the observations Y is not Gaussian and the EM algo-
rithm will only converge to an approximate ML estimate
of model parameters.

The EM algorithm iteratively estimates the parameters 6

(including matrices F, Q and R) by maximizing the log-
likelihood objective function:

J(X,Y,0) = log{L(X,Y,0)} =
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The training we have used is based on multiple observa-
tion sequences. The number of sequences M is a function
of occurrences for each vowel in the training utterances,
whereas the number of frames N, varies according to the
observation sequence m. In maximizing the objective func-
tion, we have used different expectations of the states given
the observation sequences. These expectations have been
computed using the Kalman filtering and smoothing.

The recovery of vocal tract shapes is based on estimating
the articulatory states for each frame of the test data. After
training the model parameters we have used the Iterated
Extended Kalman filtering and smoothing techniques for
estimating the articulatory states.

5. EXPERIMENTAL RESULTS

We performed some preliminary experiments of estimating
the model parameters and the vocal tract shapes for 10 En-
glish vowels (/aa/, /ae/, /ah/, [ao/, [eh/, [ey/, /ih/, [iy/,
Jub/ and /uw/) from the utterances of a female speaker
from TIMIT database.
vided into the training and test sets. The selection of the
speaker was based on data fitting with the Maeda’s model
female speaker in the two-dimensional space formed by the
frequencies of the F1 and F2 formants. The EM algorithm
for estimation of model parameters has been used for 10 it-
erations, with the algorithm convergence consistently being
observed. The MFCCs have been computed for frames of
32 ms, with 10 ms frame shift, after preemphasis and Ham-
ming windowing. We trained the models from these short
vowel tokens without taking into account the preceding
sounds for each of them. Because of that, we added before
each observation sequence a simulated starting sequence.
These starting sequences were built by linear interpolation
between the corresponding MFCCs of the mean articula-
tory vector of the codebook and those of the first frame for
each of the observation sequences. The mean articulatory
vector of the codebook was close to zero, hence the tran-
sition of the articulatory parameters from this initial state
to the first state of each observation sequence was smooth.

The vowel tokens have been di-

In Fig. 3 we show an example of recovering the vocal tract
shapes from MFCCs of a TIMIT vowel /aa/. From the
16 MFCC frames of the /aa/ token we estimated the tra-
jectories of the 8 articulatory parameters. From these pa-
rameters we recovered the vocal tract area functions and
transfer functions as plotted in this figure. An example
of recovering vocal tract shapes for an /ey/ token from
EMMA is presented in Fig. 4. The Maeda’s estimated
articulatory parameters cannot be compared directly with
the EMMA measurements. Instead we compared the vo-
cal tract shapes derived from these two methods. In the
experiments using the model parameters estimated from
TIMIT data and the articulatory-acoustic data measured
with an EMMA from a female speaker, we have found that
the estimated vocal tract shapes are consistent with the
ones derived from the actual EMMA measurements. In
our experiments, we found that the trajectories of the esti-
mated articulatory parameters from MFCC parameters are
as smooth as those obtained using the formant frequencies,
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Figure 3: Recovered vocal tract shapes for /aa/ (TIMIT)
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Figure 4: Recovered vocal tract shapes for /ey/ (EMMA)

even though the MFCC trajectories are not as smooth as
those of formant frequencies.

6. SUMMARY

We present in this paper preliminary results of our work
towards improving the recovery of vocal tract shapes from
the speech signal, using the MFCC parameters. We have
used the EM algorithm, with the E-step accomplished by
the Iterated Extended Kalman filtering and smoothing, to
estimate the model parameters. The method has been
shown to be successful for vowel tokens in TIMIT data.
The use of the method for all other classes of speech sounds
is currently underway.
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