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ABSTRACT

Parameter tying is often used in large vocabulary con-
tinuous speech recognition (LVCSR) systems to balance
the model resolution and generalizability. However, one
consequence of tying is that the differences among tied
constructs are ignored. Parameter tying can be alterna-
tively viewed as reciprocal data sharing in that a tied
construct uses data associated with all others in its tied-
class. To capture the fine difference among tied HMM
constructs, we propose to use nonreciprocal data sharing
(NRDS) when estimating HMM parameters. In partic-
ular, when estimating Gaussian parameters for a HMM
state, contributions from other acoustically similar HMM
states will be weighted, thus allowing different statistics
to govern different states. Data sharing weights are op-
timized using cross-validation. It can be shown that the
objective function for cross-validation is a sum of rational
functions and can be efficiently optimized by the growth-
transform [5, 7]. Our results on Switchboard [4] show that
NRDS reduces the word error rate (WER) significantly
compared with a state-of-art baseline system using HMM
state-tying.

1 Basic Idea

One way to think of parameter-tying is that data associated
with tied constructs is shared reciprocally. For instance,
after two triphone states “A” and “B” are tied, all data of
“A” contributes to model “B”, and vice versa, thus mak-
ing the two states effectively identical. Tying brings about
“reciprocal” data sharing in the sense that at each Baum-
Welch iteration, “A” uses the totality of data contributed
by “B”, and so does “B” use all the contribution from “A”.
While this helps to improve model robustness, it at the
same time ignores the distinction between “A” and “B”.
So “non-reciprocal” sharing might be a better choice. In
particular, a data sharing factor w(B,A) can be introduced
to weight the contribution from state “B” when estimating
the Gaussian parameters of state “A”, and an independent
factor w(A,B) to weight the contribution from state “A” to

state “B”. In general, final models for “A” and “B” will
then be different. Similar approach has been used in ana-
lyzing the nonhomogeneity of images [9].

2 Non-Reciprocal Data Sharing

To elaborate the above idea, let’s start from the Baum-
Welch [1] reestimation of HMM parameters. Without loss
of generality, assume that HMM states S are clustered into
disjoint classes K = {C1,Cs,--- ,Cx}. HMM states be-
longing to a class share a single set of parameters. The
EM [2] auxiliary function for a state-tied system, after ig-
noring contributions of HMM transition probabilities, is
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where O = {o0;}L, is the training speech, and ;(u) =
P(S; = u|O) is the occupancy count for state u at time
t. ¢’ and @ are the totality of model parameters before and
after an iteration respectively. When necessary, we will
use 4, or f¢, to denote the parameters specific to state s or
class C;. So s = e, and ¥, = X, for all s € C; in the
paradigm of state-tying. If a single Gaussian is assumed as
the output distribution, Baum-Welch reestimation for class
means and variances are
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Notice that the data sharing is indeed reciprocal in the
above formulas: for any states « and v in C;, » uses the to-
tality of data contributed by v, and vice versa. Therefore,
the distinction between individual states vanishes. How-
ever, this can be improved without sacrificing robustness.

LetC : & — K be the map from HMM states to classes,
and denote the HMM class for state s by C(s). Observe
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in that maximizing (4) under the condition (5) yields the
same result as maximizing (1). However, the change of
expression provides us with an alternative view of param-
eter tying: tying a set of parameters is equivalent to first
relaxing the constraints on parameters, and then estimat-
ing HMM parameters for an individual HMM state s by
using contributions from all HMM states in C'(s). Notice
that if 8, = @/, for any s, s’ such that C'(s) = C(s'), then
it remains true that , = 8, after an iteration. So parame-
ter tying is equivalent to data sharing under the condition
(5).

Now we can define a different objective function by
weighting contributions of other states:
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where B(s) is a set of HMM states “similar” to s that make
contributions to estimating 6,. Maximizing (6) results in
the NRDS update formulae (7) and (8):
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NRDS estimates {fi,, >} can be regarded as “smooth-
ing” MLE of an unconstrained (i.e, untied) HMM system.
Let 1, and by s be the maximum likelihood estimate (MLE)
of Gaussian mean and covariance for state s, where
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Then NRDS estimates (7) and (8) can be expressed as a
function of fi; and 3.
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where v, = Zthl e (u). A
The interpretation of (11) and (12) is that i, and ¥,

are reestimated for states with positive occupancy counts.

Then for states with insufficient data, (11) and (12) are
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carried out to get reliable estimates by smoothing MLE
{15, £,}. Since NRDS is not MLE, the likelihood of train-
ing data does not necessarily increase after an iteration.
However, under some conditions, upper and lower bounds
can be established for NRDS estimates. For details, read-
ers are referred to [8].

In the above discussions, a single Gaussian is assumed
to be the state output distribution. Extension to HMMs
with a mixture of Gaussians as the state output distribution
is straightforward if data-sharing is to be carried out at the
mixture component level. However, doing so will result
in a large number of sharing weights. As will be shown
shortly, data sharing weights will be estimated from train-
ing data as well. Too many weights will make it difficult
to get reliable weight estimates. Therefore, we insist that
data sharing be carried out at the HMM state level. We first
weigh occupancy count of state v at time ¢ by w(u, s), and
then distribute the weighted counts to the state s based on
how likely a mixture component generates a speech frame.
That is,
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where s.m stands for the m?" mixture component of state
s, M, is the number of mixture components of state s, and
1t (1, s.m) is the occupancy count that state v contributes
to the mth component of state s at time ¢t. ¢, is the
mixture weight of s.m, and N (+|s.m) is the m** Gaussian
distribution of state s. With this notation, the NRDS mean
for the m?* component of state s can be written as
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Reestimation formulas for Gaussian covariances can be es-
tablished similarly [8].

3 Optimizing Data Sharing Weights

Since sharing weights can be regarded as smoothing the
MLE estimate, directly optimizing the likelihood of train-
ing data will yield trivial W, that is, zero weights for cross
states. Therefore, it is necessary to optimize W over an
independent set of data. To this end, cross-validation or
deleted-interpolation [6] will be adopted to find the opti-
mal W. The procedure can be outlined as follows.

Let the training data O be partitioned disjointly into
oW 0@ ... 0P andlet 0P = O — O forp =
1,2,---, P. We will start with an initial model Mg and
get an estimate of HMM parameters M (P) = { p? ) , sP }
out of OP) using non-reciprocal data sharing. Hence



M(®) is a function of data sharing weights . Then we
will evaluate Q(O®); M(P), the EM auxiliary function®
on data O®) using the model M), The “optimal” W'*
will be the one that maximizes Zle Q(O®; MP), or
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To facilitate the derivation of the above objective
function, the following notation or conventions will be
adopted. Let N, = |B(s)| be the cardinality of the can-
didate set B(s) for state s, and when it is necessary to
enumerate HMM states in B(s), we will write B(s) as

B(S) = {81,82,‘”,81\[8}. (16)

Weights {w(s;, s)} will be written as a vector w, when
necessary. In addition, a ~ and a ~ on top of a symbol
denote MLE and NRDS estimates, respectively. A super-
script p indicates that a quantity is obtained from or de-
pends on data partition O(®) while a superscript 5 means a
quantity is associated with O®) = O — O®) all the data
except the segment O If the time subscript ¢ is dropped
in occupancy counts, it means it has been summed over
the time index, i.e, v (s.m) = 3_, v{ (s.m).

2o Q(O®); M(P) can be written as a sum of func-
tions each of which depends on weights related to only
one state:
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The Gaussian parameters in N (oip ) |s.m) are obtained us-
ing NRDS on data OP), and are therefore functions of
data sharing weights w;. When optimizing w,, we will as-
sume that Gaussian covariances are known. But they will
be updated once the optimal weights w, are available.
Define
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Note that Gg?,)n is an n x N, matrix while gg’,)n is an
N,-dimensional vector. Therefore, NRDS mean obtained
from data O is
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LEM counts are obatined from the initial model M,
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Let
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be the MLE mean of the m?* component of state 5. Plug
(22) into (18), and discard terms independent of w,, we
obtain
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The objective function (24) is a sum of rational func-
tions, which can be maximized efficiently by the growth
transform [5, 7]. Details of the optimization algorithm can
be found in a companion paper in SST-98 [7].

4 Experimental Results

We implemented the proposed non-reciprocal data shar-
ing and tested it on the Switchboard (SWBD) [4] task.
Since NRDS is developed by generalizing the idea of ty-
ing HMM states, NRDS results are compared with those
achieved by a state-tied baseline system. The baseline sys-
tem was built in the LVCSR workshop WS97 [3].
The WS97

baseline system « /
has about seven il
thousands  equiv- =
alence classes
of HMM states.
The NRDS esti-
mate is obtained NS
by splitting fur- A
ther (using lower
thresholds) the
baseline clustering
tree to about 14
thousands classes.
HMM state classes
at Leaf nodes will be the “atoms” for which data sharing
is carried out. At the end of splitting, B(s) is determined
as follows. For each leaf node s, all other leaf nodes are
ordered by the divergence between underlying Gaussian
distributions. The closest few nodes are selected as
B(s) so that the total occupancy is greater than a thresh-
old. Gaussian parameters of new equivalence classes
are set initially to that of their baseline parent nodes.

Figure 1: Top: objective function
vs. iterations; Bottom: data-sharing
weights vs. iterations



Subsequently sharing weights are optimized using the
growth-transform [7]. Figure 1 depicts typical changes of
an objective function and of data-sharing weights.

The NRDS model is used to rescore lattices generated
by the baseline system. Results reported here are word-
error-rate (WER) on the WS97 dev-test set, which consists
of 2427 sentences and has about eighteen thousand words.
A bigram language model is used in both systems. The
baseline result is summarized on the first line of Table 1.
The corresponding result for NRDS can be found on the
line beginning with “NRDS-GT”. We can see that NRDS
model gives us 0.9% absolute WER reduction. The im-
provement is statistically significant.

As a test of importance

o ) WER
of optimizing data sharing Baseline 391
weights, models with two NRDS-GT 38‘2
trivial sets of W are built and :
Ww=0 39.0
tested. In Table 1, the line W=1 33 3
marked with W = 0 is the :
result with w(s,s) = 1 and Table 1: Comparison

w(u,s) = 0 for all u # s.
This is essentially a state-tied
model with about 14 thousand
equivalence classes of HMM states. The line with W =1
means w(u, s) = 1 forallu € B(s) and 0 otherwise. This
model corresponds to the highest degree of constraint
on model parameters given B(s) and 14 thousands
equivalence classes. This suggests that the improvement
is indeed due to better data sharing weights, not to the
increased number of HMM equivalence classes.

of WER of NRDS vs.
baseline system

5 Conclusions

In this paper we have developed a novel approach to es-
timating HMM parameters, namely non-reciprocal data
sharing (NRDS). NRDS is obtained by generalizing
parameter-tying, which can be regarded as reciprocal data
sharing. A data sharing matrix is introduced to weigh
the contributions from other HMM states when estimating
model parameters of a HMM state.

NRDS can be viewed as smoothing the MLE of HMM
parameters, where data sharing weights parameterize the
degree of smoothing. We have shown that the data sharing
matrix can be optimized by cross-validation. Under some
assumptions, the objective function of cross-validation is
a sum of rational functions of data-sharing weights. It is
shown in this report that a sum of rational functions can be
optimized efficiently by the growth-transform.

Our experiments show that NRDS reduces WER by
0.9% (absolute) on the LVCSR WS97 dev-test set. The re-
duction is statistically significant at confidence level 95%.
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