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ABSTRACT

Phase-corrected RASTA is a new technique for channel nor-
malization that consists of classical RASTA filtering followed
by a phase correction operation. In this manner, the channel
bias is as effectively removed as with classical RASTA, with-
out introducing a left context dependency. The performance
of the phase-corrected RASTA channel normalization technique
was evaluated for a continuous speech recognition task. Us-
ing context-independent hidden Markov models we found that
phase-corrected RASTA reduces the best-sentence word error
rate (WER) by 23% compared to classical RASTA. For context-
dependent models phase-corrected RASTA reduces WER by 15%
compared to classical RASTA.

1. INTRODUCTION

In order to reduce the linear filtering effect of communication
channels, different channel normalization (CN) techniques have
been proposed (e.g. [1, 2, 3]). Recently, a new, extended ver-
sion of the classical RASTA filtering technique was proposed and
tested in the context of connected digit recognition over the tele-
phone [4, 5, 6]. The results of these connected digit string experi-
ments showed that the recognition performance of phase-correct-
ed RASTA (pcR) is equivalent to the performance of cepstrum
mean subtraction (CMS). In addition, it was concluded that the
new CN method is better suited for context-independent model-
ing than classical RASTA (cIR), because it removes the left con-
text dependency introduced by clR.

The connected digit string experiments suffered from an impor-
tant limitation. In the digit vocabulary the average number of dif-
ferent contexts for each phone is small. Therefore, the impact of
introducing a left context dependency by using cIR is limited. This
explains that cIR is still capable of outperforming applying no CN
and the gain as a result of switching from cIR to pcR is small when
using context-independent models. This could also explain why
we did not find significant differences between the different CN
methods that we studied when we used context-dependent mod-
els. [6]. Enlarging the test set would reduce the confidence re-
gions such that possible differences could yet become visible in
the case of context-dependent models. However, staying in the
connected digit domain could never have taken away the limita-
tion due to the small number of different contexts for each phone.
In this paper, we report on experiments using phase-corrected
RASTA for a continuous speech recognition task. In this task

the average number of different contexts for each phone is much
higher. In addition, the amount of training and testing data we
used is much larger. For these reasons, the new task is better
suited to test the effectiveness of different CN techniques relative
to each other. Especially the effects of using context-dependent
vs. context-independent models can be well established with the
new set-up. Thus, this CSR task will provide a thorough check on
our original claims about phase-corrected RASTA [6].

This paper is organised as follows. The telephone database that we
used for our experiments is described in section 2. In section 3, the
signal processing for our experiments is described. The topology
of the hidden Markov models (HMMs), the way these were trained
and the recognition task are described in section 4. The results of
our recognition experiments are discussed in section 5. Finally, in
section 6 we sum up the main conclusions.

2. DATABASE

The speech material for these experiments was collected with an
on-line version of a spoken dialogue system which provides public
transport information in the Netherlands. This system is an adap-
tation of a German prototype developed by Philips Research Labs
[7, 8]. Speakers were recorded over the public switched telephone
network in the Netherlands. Speakers, handset and channel char-
acteristics are not known.

A total of 33,471 utterances was collected. For training we
reserved 25,104 utterances (83,876 words corresponding to 8.9
hours of speech excluding leading, intermediate and trailing silent
portions of the recordings). The remaining 8,358 utterances
(28,048 words corresponding to 3.0 hours speech) were set apart
as an independent test set. None of the utterances used for training
or test had a high background noise level.

The average number of words per utterance is 3.3; this is rather
low, especially when it is compared to ATIS, Wall Street Journal
or North American Business News. The short utterances are quite
normal in real dialogues between callers and operators in informa-
tion services. The language of the corpus is Dutch; the speech was
spontaneous and unprepared.

3. SIGNAL PROCESSING

Speech signals are in A-law format. After conversion to a linear
scale, preemphasis with factor 0.98 was applied. A 25 ms Ham-
ming window that was shifted with 10 ms steps was used to calcu-



late 24 filterband energy values for each frame. The 24 triangular
shaped filters were uniformly distributed on a mel-frequency scale
(covering 0 - 2143.6 mel). Finally, 12 mel-frequency cepstral co-
efficients (MFCC’s) were derived [9]. In addition to the twelve
MFCC’s we also computed before CN was applied the twelve
first time-derivatives (delta-MFCC’s), log-energy (logE) and its
first time-derivative (delta-logE). In this manner we obtained 26-
dimensional feature vectors.

We applied CN only to the twelve MFCC coordinates of the fea-
ture vector. We kept the original values of delta-MFCC’s, logE
and delta-logE. For CMS the vector of average cepstral coeffi-
cients was calculated over the whole utterance (i.e., including
leading, intermediate and trailing silent portions of the recorded
signal). We used cIR with integration factor -0.94 [2]. For pcR
we used the same integration factor in combination with a phase-
correction filter [4, 5, 6]. During the time-reversal operations re-
quired for the phase-correction we used the whole utterance [6].
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Figure 1: Impulse response of the phase-corrected RASTA filter.

The impulse response of the pcR filter is shown in Figure 1. Due
to the zero-phase pcR filter characteristic, the impulse response is
essentially symmetric. Symmetry of the impulse response was re-
ported to be one of the key features of optimally designed filters
that were calculated in a data-driven approach based on linear dis-
criminant analysis [10].

4. MODELS

4.1. Training context-independent models

37 context-independent phone models were trained. In addition,
we used one model for all sorts of noise and one model to describe
silence. The phone models and the noise model consisted of six
hidden Markov states, where states 2, 4 and 6 shared the emis-
sion probability density function with states 1, 3 and 5, respec-
tively. A single-state HMM was used for the silence model. All
HMMs were left-to-right where only self-loops, transitions to the
next state or to the next state plus one were allowed. The emis-
sion probability density functions were described as a continuous
mixture of 26-dimensional Gaussian probability density functions
(diagonal covariance matrices). In order to be able to study the
recognition performance as a function of acoustic resolution, we

used mixtures which contained 4, 8, 16 and 32 Gaussians. With a
total of 115 HMM states we arrived at CI-HMM systems contain-
ing a total of 460, 920, 1840 and 3680 Gaussian densities respec-
tively.

The training lexicon contained 1415 words. Models were ini-
tialised using a linear segmentation within the speech portions of
the signal, as determined with a silence-speech detector. After ini-
tialisation a fixed number of Viterbi optimisation passes was used
to further train the models. As a next step the number of Gaus-
sians per state was doubled. To this aim a K-means clustering al-
gorithm was applied using the segmentations obtained in the pre-
vious Viterbi pass [7]. After splitting, again Viterbi optimisation
was applied. This process of successive splitting and subsequent
Viterbi optimisation was repeated until we obtained models with
32 Gaussians per state.

4.2. Training context-dependent models

In order to define context-dependent HMMs we determined all
different contexts for each phone in our training material and used
a state-tying mechanism to avoid the risk of undertraining. To this
aim each phone in our database was considered to consist of three
segments, where the first segment corresponded to the first two
HMM states, the second segment to states 3 and 4, and the last
segment to states 5 and 6. For clustering segments it was assumed
that the first segment only depends on the phone immediately to
the left of the phone under consideration, the middle segment is in-
dependent of the context and the last segment only depends on the
phone immediately right to the phone under consideration. During
clustering word boundaries were regarded as a special phone. As
aconsequence, we did not model cross-word context. The number
of independent CD phone units to train models for was determined
by specifying the minimum number of observations of a phone in
a particular left or right context.

In a set of tuning experiments we determined the optimum num-
ber of CD phone units for the training database described above.
Of course, the same lexicon was used as for the contect indepen-
dent models. We found that the recognition performance was not
critically sensitive to the number of CD phone units. All data in
this paper are based on a system with 388 CD phone units. This
choice allows us to compare CI-HMMs and CD-HMMs with ap-
proximately equal numbers of Gaussian densities. We trained CD-
HMMs with 1, 2, 4 and 8 Gaussians per state. In this manner we
arrived at CD-HMM systems with a total of 388, 776, 1552 and
3104 Gaussian densities respectively.

For each CD-HMM system we jointly optimized the word en-
trance penalty and the language model factor. In order to avoid
optimization on the actual test set, we used a jack-knifing proce-
dure with the number of sub-sets N = 4. We wanted to be able to
compare results for the CD-HMM systems to those obtained for
the CI-HMM systems. For this reason we used exactly the same
division into sub-sets in both cases when we evaluated the recog-
nition performance. In the case of the CI-HMMs we did not use
the jack-knifing procedure to determine the optimal values of the
word entrance penalty and the language model factor. The optimal
values for the CI-HMMs were copied from a previous version of
the CSR [8].



4.3. Recognition

The recognition lexicon contained 983 words. 1.2% of the words
in the test set were out-of-vocabulary. During recognition the
acoustic models were combined with unigram and bigram lan-
guage models derived from the training data. The test set perplex-
ity of the recognition task was 36.7. For our evaluations we re-
stricted ourselves to the single best recognized sentence. The best-
sentence word error rate (WER) was defined as

S+D+1

WER = x 100%, M

where N is the total number of words in the test set, S denotes the
total number of substitution errors, D the total number of deletion
errors and I the total number of insertion errors. The WER values
presented in this paper were obtained by averaging over the WER
values obtained for those test utterances that were not used to find
the optimal values for the word entrance penalty and the language
model factor.

5. RESULTS AND DISCUSSION
5.1. Results for CI-HMMs

We trained and tested CI-HMMs for four different conditions: no
channel normalization (NCN), cIR, CMS over the whole utterance
and pcR over the whole utterance. The WER is shown in Figure
2 as a function of the total number of Gaussians used. Figure 2
shows that cIR deteriorates recognition performance compared to
NCN. Apparently, removing the channel bias by using cIR at the
same time introduces so much left context dependency that the po-
tential CN gain is completely annihilated. The results for pcR in-
dicate that the poor performance of classical RASTA is a direct
consequence of the phase distortion infroduced. By removing the
phase distortion the recognition performance is significantly and
substantially improved compared to cIR. At the highest total num-
ber of Gaussians in our CI-HMM approach the WER is reduced by
23% relative to cIR. Furthermore, pcR recognition performance
is significantly better compared to NCN (except at the suboptimal
models corresponding to 4 (Gaussians per state). Finally, it can be
seen that CMS appears to be preferred over pcR for CI-HMMs
corresponding to 4 and 8 Gaussians per state. However, for more
complex acoustic models the performance differences become in-
significant and pcR performs as well as CMS.

The results shown in Figure 2 are in good agreement with the re-
sults we reported earlier in the context of a connected digit recog-
nition task [5, 6]. In that case we also found that pcR was capable
of outperforming clR, that pcR was preferred over NCN and that
pcR and CMS performance showed no significant difference. The
only qualitative difference between the results for the connected
digit recognition task and those reported here is the fact that cIR
performed significantly better than NCN in the case of connected
digit recognition. However, this may be explained by the small
number of different phoneme contexts in the Dutch digit vocabu-
lary: based on 18 monophones the number of different phone con-
texts is as low as 32.

One may expect that the deteriorating effect of introducing the left
context dependency by using cIR is a function of the number of
different contexts in the vocabulary: The larger the number of dif-
ferent contexts, the larger this effect. In the case of the connected

digits the number of different contexts is small. As a result the
balance is still positive between the performance gain due to the
channel bias removal on the one hand and the performance loss
due to enhancement of the left context dependencies while using
CI-HMMs on the other: For connected digit recognition clIR out-
performs NCN. In addition, there is a gain by applying the phase
correction but it is small.

We determined the number of different phone contexts observed
in the training set for the continous speech recognition task.
Based on 37 monophones we found 2373 different phone con-
texts. When compared to the digit recognition task this is more
than 70 times larger. As a consequence, the loss in recognition
performance due to enhancement of the left context dependencies
will be more important. Apparently, in our continuous speech re-
cognition task this effect is now so large that it has become more
important than the gain due to the channel bias removal. There-
fore, for medium and large vocabulary continuous speech recog-
nition cIR does not improve recognition performance compared
to NCN, while the gain is substantial when switching from cIR to
pcR or to CMS. Summing up, we obtain consistent results for two
independent recognition tasks that differ considerably.
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Figure 2: Recognition accuracy for clR (x), pcR (%) and
CMS(e), compared to the feature set without CN (0) when using
CI-HMMs.

5.2. Results for CD-HMMs

We repeated the comparison of CN techniques using CD-HMMs
instead of CI-HMMs. The average WER results as a function of
the total number of Gaussian densities are shown in Figure 3 for
CD-HMMs with up to 8 Gaussians per state.

When using cIR in the case of CD-HMMs one would expect that
the loss of recognition performance due to enhancement of the
left context is diminished, because different contexts are modelled
with different states. When every individual left context could
be modelled independently this effect would be at its maximum
strength and the net result would be that one only has the gain in
recognition performance due to the channel bias removal. How-
ever, in addition to the CD phone units there are a number of phone
segments representing left contexts that are clustered during the
state-tying.



In our CD-HMMs we used 167 CD units for modeling different
left contexts. This is 14.2 times smaller than the total number
of different phone contexts present in our training data, but 4.4
times larger than the number of different units we used to model
the left contexts in our CI-HMM models. Based on these figures,
one would expect that the performance of cIR for our CD-HMMs
would be more effective than in the case of CI-HMMs. As can be
seen in Figure 3 the difference between cIR and NCN has become
smaller than the one we observed for CI-HMMs. For our best CI-
HMMs we found that cIR decreases recognition performance by
16% when compared to NCN. In the case of our best CD-HMMs
the performance only drops 9%. Thus we indeed observe some
gain when switching from CI- to CD-HMMs in the case of cIR, but
this improvement is limited due to the state-tying mechanism that
we used to avoid undertraining. In fact the gain is too small such
that we still do not benifit from the channel bias removal of cIR in
this case. This suggests that increasing the number of CD-HMM
units could maybe further reduce the negative effect of combining
different left contexts to the extent that cIR would eventually out-
perform NCN.

As a second result it can be seen in Figure 3 that introducing the
phase-correction immediately brings the recognition performance
curve very close to the one for CMS (except at the models corre-
sponding to 1 Gaussian per state). For the CD-HMM:s correspond-
ing to 8 Gaussians per state WER is improved by 15% when cIR
is replaced by pcR. This is in good agreement with the results of
pcR obtained for CI-HMMs.

The present set of experiments indicates that a successful CN
method should not introduce any phase distortion if CD-HMMs
are used and the training data is not sufficient to model the left
context dependency for all relevant contexts. This result is in good
agreement with the conclusions in [4, 5, 6].
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Figure 3: Recognition accuracy for clR (x), pcR (%) and
CMS(e), compared to the feature set without CN (0) when using
CD-HMMs.

6. CONCLUSIONS

We compared the performance of cIR, CMS, pcR and using no
channel normalization within the context of a medium vocabulary
continuous speech recognition task. CMS over the whole utter-

ance consistently gave the best results, but the difference with pcR
is not sigificant. No CN yields better results than cIR, due to the
left context dependency introduced by the classical RASTA filter.
Context dependent HMMs appear to reduce the detrimental effect
of the left context dependency to some extent, but not enough to
bridge the gap that separates it from CMS and pcR completely.
Apparently, modeling artefacts of the RASTA filter is not the most
effective use of limited amounts of training data. Finally, the con-
clusions of this study are in good agreement with the ones obtained
in the context of connected digit recognition [4, 5, 6]. This under-
lines the importance of the phase response of CN filters, in addi-
tion to their magnitude response.
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