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ABSTRACT

This paper introduces a method for regularization of HMM sys-
tems that avoids parameter overfitting caused by insufficient train-
ing data. Regularization is done by augmenting the EM training
method by a penalty term that favors simple and smooth HMM
systems. The penalty term is constructed as a mixture model of
negative exponential distributions that is assumed to generate the
state dependent emission probabilities of the HMMs. This new
method is the successful transfer of a well known regularization
approach in neural networks to the HMM domain and can be inter-
preted as a generalization of traditional state-tying for HMM sys-
tems. The effect of regularization is demonstrated for continuous
speech recognition tasks by improving overfitted triphone models
and by speaker adaptation with limited training data.

1. INTRODUCTION

A general problem when constructing statistical pattern recogni-
tion systems is to ensure the capability to generalize well, i.e. the
system must be able to classify data that is not contained in the
training data set. Hence, the classifier has to learn the true under-
lying data distribution instead of overfitting to the few data ex-
amples seen during system training. One way to cope with the
problem of overfitting is to balance the system’s complexity and
flexibility against the limited amount of data that is available for
training.

In the neural network community it is well known that the
amount of information used in system training that is required for
a good generalization performance should be larger than the num-
ber of adjustable weights [1]. A common method to train a large
size neural network sufficiently well is to reduce the number of
adjustable parameters either by removing those weights that seem
to be less important (in [2] the sensitivity of individual network
weights is estimated by the second order gradient) or by sharing
the weights among many network connections (in [3] the connec-
tions that share identical weight values are determined in advance
by using prior knowledge about invariances in the problem to be
solved). A second approach to avoid overfitting in neural net-
works is to make use of regularization methods. Regularization
adds an extra term to the training objective function that penal-
izes network complexity. The simplest regularization method is
weight decay [4] that assigns high penalties to large weights. A
more complex regularization term is used in soft weight-sharing
[5] by favoring neural network weights that fall into a finite set of
small weight-clusters. The traditional neural weight sharing tech-
nique can be interpreted as a special case of soft weight-sharing
regularization when the cluster variances tend towards zero.

In continuous speech recognition the Hidden Markov Model
(HMM) method is common. When using detailed context-
dependent triphone HMMs, the number of HMM-states and para-
meters to estimate in the state-dependent probability density func-
tions (pdfs) is increasingly large and overfitting becomes a serious
problem. The most common approach to balance the complexity
of triphone HMM systems against the training data set is to reduce
the number of parameters by tying, i.e. parameter sharing [6]. A
popular sharing method is state-tying with selecting the HMM-
states to be tied in advance, either by data-driven state-clustering
based on a pdf-dependent distance metric [7], or by construct-
ing binary decision trees that incorporate higher phonetic know-
ledge [8]. In these methods, the number of state-clusters and the
decision tree sizes, respectively, must be chosen adequately to
match the training data size. However, a possible drawback of
both methods is that two different states may be selected to be
tied (and their pdfs are forced to be identical) although there is
enough training data to estimate the different pdfs of both states
sufficiently well. In the following, a method to reduce the com-
plexity of general HMM systems based on a regularization term is
presented. Due to its close relationship to the soft weight-sharing
method for neural networks this novel approach can be interpreted
as soft state-tying.

2. MAXIMUM LIKELIHOOD TRAINING IN
HMM SYSTEMS

Traditionally, the method most commonly used to determine
the set of adjustable parameters © in a HMM system is max-
imum likelihood (ML) estimation via the expectation maximiza-
tion (EM) algorithm. If the training observation vector sequence
is denoted as X = (x(1),...,x(7)) and the corresponding
HMM is denoted as W the ML estimator is given by:

GML _ argmax {log pe (X|W)} )]

In the following, the total number of different HMM states is
given by K. The emission pdf of the k-th state is denoted as
b, (x); for continuous HMMs by, (x) is a mixture of Gaussian pdfs
most commonly; in the case of discrete HMMs the observation
vector x is mapped by a vector quantizer (VQ) on the discrete
VQ-label 72(x) and the emission pdf is replaced by the discrete
output probability by, (12). Using the forward-backward algorithm
the probabilistic state counts v (¢) can be determined for each
training observation and the log-likelihood over the training data
can be decomposed into the auxiliary function Q(©) optimized in



the EM steps (state transition probabilities are neglected here):

QO) =" k(1) - log bi(x(t) @

t=1 k=1

Sometimes, the observation vector x is split up into several in-
dependent streams. If the total number of streams is given by 7,
the features in the z-th stream comprise the subvector x® and
in the case of application of a VQ the corresponding VQ label
is denoted as /7@ (x®). The observation subvectors in different
streams are assumed to be statistically independent thus the states’
pdfs can be written as:

Z
b(x) = [ ¥ (x%) 3)

3. A COMPLEXITY MEASURE FOR HMM
SYSTEMS

When using regularization methods to train the HMM system, the
traditional objective training function Q(©) is augmented by a
complexity penalization term {2 and the new optimization prob-
lem becomes:

gres — argnéax {Q(©)+v-Q} ®

Here, the regulizer term €2 should be small if the HMM system has
high complexity and parameter overfitting becomes a problem; €2
should be large if the HMM-states’ pdfs are shaped smoothly and
system generalization works well. The constantz > 0 is a control
parameter that adjusts the tradeoff between the pure ML solution
and the smoothness of penalization. In Eqn. (4) the term Q(©)
becomes larger the more data is used for training (which makes
the ML estimation become more reliable) and the influence of the
term v - 2 gets less important, relatively.

The basic idea when constructing an expression for the reg-
ulizer 2 that favors smooth HMM systems is, that in the case
of simple and smooth systems the state-dependent emission pdfs
by () should fall into several groups of similar pdfs. This is in con-
trast to the traditional state-tying that forces identical pdfs in each
group. These differences are illustrated in Fig. 1 for an example
of two-state HMMs with discrete emission probabilities. In the
following, the clusters of similar emission pdfs are described by a
probabilistic mixture model. Each pdf is assumed to be generated
by a mixture of / different mixture components p; (- ). In this case
the probability (-density) of generating the emission pdf by (-) is
given by:

I
() =D ei-pi(bi(-) 5)
i=1

with the mixture weights ¢; thatare constrainedto 0 < ¢; < 1 and
1= ZLI ¢i. The i-th mixture component p; (- ) is used to model
the :-th cluster of HMM-emission pdfs. Each cluster is represen-
ted by a prototype pdf that is denoted as 3; () for the i-th cluster;
the distance (using a suitable metric) between a HMM emission
pdf by (+) and the i-th prototype pdf is denoted as D;(bx(-)). If
these distances are small for all HMM emission probabilities there
are several small clusters of emission probabilities and the reg-
ulizer term €2 should be large. Now, it is assumed that the dis-
tances follow a negative exponential distribution (with a deviation
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Figure 1. Changes of discrete emission probabilities by state-
tying and by regularization

parameter JA;), yielding an expression for the mixture compon-
ents:

z z
pi(b()) = (H A) cexp (— D N Di(bf (-)))
z=1 z=1
(6)
In Eqn. (6) the more general case of Z independent streams is
given. Hence, the HMM emission pdfs and the cluster proto-
type pdfs are split up into Z different pdfs b}:) () and ﬁ}z) (+), re-
spectively and the stream dependent distances ); . and paramet-
ers \; - are used.
Now, for the regulizer term €2 the log-likelihood of the mixture
model in Eqn. (5) over all emission pdfs in the HMM system can
be used:

Q= Zlogp(bk(')) (7

4. REGULARIZATION EXAMPLE:
DISCRETE HMMS

As an example for parameter estimation in the regularization
framework, a discrete HMM system with different VQs for each
of the Z streams is considered here: Each VQ subdivides the fea-
ture space into J, different partitions (i.e. the z-th codebook size



is J.) and the VQ-partition labels are denoted mgz). If the obser-
vation subvector x is in the 7-th VQ-partition the VQ output is
Mm@ (x@) = m
J

Since discrete HMM output probabilities b}:) (m®@) are used
here, the regulizer’s prototypes are the discrete probabilities
Jé) (z)(mgz)). As a distance metric between the HMM emission
probabilities and the prototype probabilities used in Eqn. (6) the
asymmetric Kullback-Leibler divergence is applied:

b()(m(z))
BR(mP) log o= (8)
Z 8P ()

D,’yz(b

4.1. Estimation of HMM parameters using regu-
larization

The parameter set © of the HMM system to be estimated mainly
consists of the discrete HMM emission probabilities (transition
probabilities are not subject of regularization here). To get an iter-
ative parameter estimation in the EM style, Eqn. (4) must be max-
imized; e.g. by setting the derivative of Eqn. (4) with respect to the
HMM-parameter b}:) (mﬁz)) to zero and application of Lagrange
multipliers with regard to the constraint 1 =5 J;l b9 (mgz) ).
This leads to a quite complex solution that can be only solved nu-
merically.

The optimization problem can be simplified if the mixture in
Eqn. (5) is replaced by the maximum approximation; i.e. only the
maximum component in the sum is considered. The correspond-
ing index of the maximum component is denoted ¢*:

p(bx(+)) = cis - pis (bi()) = o {ci-pibe(:))} O

In this simplified case the HMM parameter estimation is given
by:
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This is a weighted sum of the well known ML solution and the ieg?
ulizer’s prototype probability ﬁ}? (+) that is selected by the max-
imum search in Eqn. (9). The larger the value of the constant
v, the stronger is the force that pushes the estimate of the HMM
emission probability BLZ) (mEz)) towards the prototype probability
ﬁ}? (). The situation when v tends towards infinity corresponds
to the case of traditional state-tying, because all different states
that fall into the same cluster :* make use of ﬁ}? (+) as emission
probability in the z-th stream.

4.2. Estimation of regulizer parameters

The parameter set ¢ of the regulizer consists of the mixture
weights c;, the deviation parameters JA; -, and of the discrete pro-
totype probabilities ﬁ}z) (mEz)) in the case of regulizing discrete
HMMs. These parameters can be set in advance by making use
of prior knowledge; e.g. the prototype probabilities can be ob-
tained from a simple HMM system that uses a small number of
states. Alternatively, the regulizer’s parameters can be estimated
in a similar way as in [5] by maximizing Eqn. (7). Since there

is no direct solution to this optimization problem, maximization
must be performed in an EM-like iterative procedure that uses the
HMM emission pdfs by (-) as training data for the mixture model
and by increasing the following auxiliary function in each step:

D> PGk ()

k=1 i=1

DO Pilb())

k=1 i=1

R(¢) ) - log p(z, bx(-))

log (i - pi(br(+))) (A

with the posterior probability used as weighting factor given by:
ci - pilbr(-))
T

2imy e pi(br()

Again, maximization of Eqn. (11) can be performed by setting
the derivative of R(¢) with respect to the regulizer’s parameters

P(ilbx () = (12)

to zero under consideration of the constraints 1 = Zf LG and
Z by application of Lagrange multipliers. For
the estimation of the regulizer parameters this yields:
. &
Gi=1 Z Pilbi(-) (13)
=1

4 ker PUIBR())

e > - (14)
v D z(b,ﬁ)c)) - P(ilbe ()

N (E,ﬂ (ilbe )logb@(mf)))
K

_ £, Pl
Zexp(

_, P(Ibk(+)) - log b,‘?(mf)))
L P(Ubx())

(15)
The estimate ¢; can be interpreted as the average probability thata
HMM emission probability falls into the ¢-th mixture cluster; A; -
is the inverse of the weighted average distance between the emis-

sion probabilities and the prototype probability 3; @ (+)- The estim-

ateﬁ (

ilities for the VQ-label mz) weighted in the log-domain.

If the Euclidean distance between the discrete probabilities is
used instead of Eqn. (8) to measure the differences between the
HMM emission probabilities and the prototypes:

@ ) is the average probability over all emission probab-

Jz

2
Di,z(b;(:)(ﬁl(z))) _ Z (ﬁi(Z)(mEZ)) _ bl(:)(mzz)))

J=1

(16)

the estimate of the prototype probabilities is given by the average
of the HMM probabilities weighted in the original space:

50,0 _ Lwes PUID() B2 ()
) oer PR ()

5. EXPERIMENTAL RESULTS

To investigate the performance of the regularization methods de-
scribed above a HMM speech recognition system for the speaker-
independent resource management (RM) continuous speech task

an



is built up. For training 3990 sentences from 109 different speak-
ers are used. Recognition results are given as word error rates
averaged over the official DARPA RM test sets feb’89, oct’89,
feb’91 and sep’92, consisting of 1200 sentences from 40 different
speakers, totally. Recognition is done via a beam search guided
Viterbi decoder using the DARPA RM word pair grammar (per-
plexity: 60).

As acoustic features every 10 ms 12 MFCC coefficients and the
relative signal power are extracted from the speech signal along
with the dynamic A- and AA-features, comprising 39 features
per frame. The HMM system makes use of standard 3-state dis-
crete probability phonetic models. Four different neural network
VQs, trained by the MMI method that is described in in [9], are
used to quantize the features into 4 = 4 different streams of dis-
crete labels. The codebook size in each stream is set to 200.

A simple system with models for 47 monophones and for the
most prominent 33 function words (totally 394 states) yields a
word error rate of 8.6%. A system that makes use of the more
detailed (but untied) word internal triphone models (totally 6921
states)yields 12.2% word error. Hence, HMM overfitting because
of insufficient training data is a severe problem in this case. It
must be noted that in contrast to the usual training procedure in
[10] no further smoothing methods are applied to the HMM emis-
sion probabilities here.

In a first series of experiments the untied triphone system is
regulized by a quite simple mixture of / = 394 density compon-
ents, i.e. the number of clusters in the penalty term is identical to
the number of states in the monophone system. In this case the
prototype probabilities are initialized by the emission probabilit-
ies of the monophone system; the mixture weights and the devi-
ation parameters in the regulizer are set to be uniform, initially.
In order to test the inluence of the tradeoff parameter v it is set to
50, 10 and 2. The corresponding word error rates are 8.4%, 6.9%
and 6.3%, respectively. In the case of large vs regularization de-
grades to a tying of triphone states to monophone states and the
error rate tends towards the monophone system performance. For
smaller vs there is a good tradeoff between data fitting and HMM
smoothness yielding improved system performance. The initial
prototype probability settings provided by the monophone system
do not seem to be changed much by regulizer parameter estima-
tion, since the system performance only changes slightly when the
regulizer’s parameter reestimation is not incorporated.

In preliminary experiments the regularization method is also
used for speaker adaptation. A speaker-independent system
trained on the Wall Street Journal (WSJ) database yields an er-
ror rate of 32.4% on the Nov. 93 S3_PO test set with 10 differ-
ent non-native speakers. The speaker-independent HMM emis-
sion probabilities are used to initialize the prototype probabilit-
ies of the regulizer. Then, speaker-dependent systems are built up
for each speakerusing only 40 fast enrollment sentences for train-
ing along with regularization (v is set to 10). Now, the error rate
drops to 25.7% what is better than the speaker adaptation method
described in [11] that yields 27.3% by a linear feature space trans-
formation. In combination both methods achieve 23.0% word er-
ror.

6. SUMMARY AND DISCUSSION

A method to avoid parameter overfitting in HMM systems by ap-
plication of a regularization term that favor smooth and simple
models has been presented here. The complexity measure applied
to the HMMs is based on a finite mixture of negative exponential

distributions, that generates the state-dependent emission probab-
ilities. This kind of regularization term can be interpreted as a
soft state-tying, since it forces the HMM emission probabilities to
form a finite set of clusters. The effect of regularization has been
demonstrated on the RM task by improving overfitted triphone
models. On a WSJ non-native speaker adaption task with limited
training data, regularization outperforms feature space transform-
ations.

Eqn. (4) may be also interpreted from a perspective of Bayesian
inference: the term v - €2 plays the role of setting a prior distribu-
tion on the HMM parameters to be estimated. Hence, the use of a
mixture model for €2 is equivalent to using a special kind of prior
in the framework of MAP estimation for HMMs [12].
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