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ABSTRACT

This paper describes, how to train Maximum Mutual In-
formation Neural Networks (MMINN) in an efficient way,
with a new topology. Large vocabulary speech recogni-
tion systems, based on a Hybrid MMI/connectionist HMM
combination, have shown good performance on several
tasks [1] and [2]. MMINNSs are trained to maximize the
mutual information between the index of the winning out-
put neuron (Winner-Takes-All network) and the phoneti-
cal class of the corresponding acoustic frame. One ma-
jor problem of MMI-neural networks is the high computa-
tional effort, which is needed for the training of the neural
networks. The computational effort is proportional to the
input and output size of the neural network and to the num-
ber of training samples. This paper shows two approaches,
that demonstrate, how these long training times can be re-
duced with very low or even no loss in recognition accu-
racy. This is achieved by the use of phonetical knowledge,
to build a network topology based on phonetical classes.

1. INTRODUCTION

MMINNS can be used as a high performance vector quan-
tizer (VQ) for a discrete HMM speech recognizer. It can
be shown, that this paradigm is optimal for statistical pat-
tern classification in the maximum likelihood sense [3].
The computational effort for the training of the single layer
MMINN is proportional to the input and output size of the
neural network and to the number of training samples. To
reduce the computing time, one could decrease the number
of input or output neurons or the number of training data.
But by doing this, one would also decrease the mutual in-
formation of the network, which leads to worse recognition
results. A solution for this problem is to split up this single
network into several smaller networks, each for a subset
of the phonetical classes (e.g. vowels, etc.) The decision,
which of the smaller networks is chosen, is done by another
network, which now tries to maximize the mutual infor-
mation between its output and the phonetical subclasses of
the corresponding frame (decision network). Those small
networks can be trained much faster, due to their smaller
number of parameters. The goal is, that the overall mutual

information, of all small networks will be approximately
the same as for one big network.

2. BASELINE SYSTEM

The baseline system is a single layer neural network with
an input size of 12 times the number of frames looked at.
This means for a single frame network the size is 12, for
a three frame network the size would be 36. The output
size is chosen to 200, to have the same topology as the sys-
tem in [1]. Figure 1 shows the structure for a single frame
network. The network is trained to maximize the mutual
information between the label stream Y produced by the
network and the corresponding phonetical information 1.

I(W,Y) = H(W) - HW[Y) (1)

InEq. 1 H(W) is not affected by the neural network, thus
only H(W|Y') has to be minimized in order to maximize
I(W,Y). This means, that the loss of information, which
will occur because of the quantization error, will be mini-
mized.

HWIY) = =33 P(wi,ym) - logP(wilym) (2)
I M

[3] describes a method how to perform this training with
a gradient descent approach using the softmax function in
the output layer.

For the training procedure phonetical knowledge is nec-
essary, thus the training data has been aligned with 47
phones. (45 phones plus silence and an optional inter-word
silence).

Figure 1. Baseline topology for the MMI neural network,
with an input layer size of 12 and an output layer size of
200
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Figure 2. Structure of a flat decision network and the corresponding MMI networks

3. NEW TOPOLOGIES

The goal of a new topology is to split up the network in
Fig. 1 into several smaller networks, which can be trained
faster, because of their smaller output layer. An addi-
tional decision network is necessary to choose, which of
the smaller networks will be used.

The idea of this paper is to use phonetical knowledge to
create the decision network. This is inspired by the idea,
that sounds belonging to the same phonetical class like e.g.
vowels can be easily separated from sounds not belong-
ing into this class. In the following sections two different
topologies for this decision network and the small MINNs
are presented:

3.1. Flat decision network

The topology of the first approach (see Fig. 2) presented
here consists of a single layer (flat) decision network. The
disjunct phonetical classes used in this approach are vow-
els, fricatives, glides, plosives, nasals and affricates. Those
classes were used to train the decision network. The ob-
jective function is to maximize the mutual information be-
tween the phonetical classes and the indices of the win-
ning neurons. So this approach is very similar to the base-
line approach, with the difference, that here only classes of
phones are looked at and at the baseline system makes use
of the phones itself. Another difference is the size of the
output layer, which is only 10% of the size of the baseline
system.

After the training of the decision network, all feature
vectors are quantized by the decision network. In a sec-
ond step, using all feature vectors, which have been quan-

tized to the same class, a new MINN is trained. So for
each output neuron of the decision network there will be
such a MINN. Only those training data are used for each
new MINN, which correspond to the winning neuron of
the decision network. Thus each of the new MINNs will
only see a fraction of the whole training data. The input of
these new networks is the same feature vector, the decision
network sees. The sum of the output sizes of all of those
second level networks together is the same as the size of
the output layer of the baseline system. The output size of
those second level networks can be computed as:

output size of the baseline system

output size of the decision network 3)
Another possibility to determine the size of the output
layer, is to consider the number of training data each net-
work gets. So for more training data more parameters can
be estimated, thus the size of the output layer can be larger.
Because the sum of all output nodes has to stay the same,
the networks with less training data will become smaller.
For the approach in Fig. 2 the total number of parame-
ters is exactly the same as in the baseline approach, but the
computational effort is much smaller, because each of the
networks is trained with a fraction of the whole training
data. For the case that all networks get the same amount
of training data, the computational effort for this approach
compared to the baseline system can be computed as:

OL size - #of networks - % of training data

“

size of the baseline output layer

Which equals to the percentage of training data each net-
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Figure 3. Hierarchical decision tree network

work sees, because the size of the output layer times the
number of networks equals to the size of the baseline out-
put layer. So for the case in Fig. 2 the computational effort
is 5% of the baseline system plus the training time for the
decision network, which is 10% of the baseline training
time. In total this gives 15% of the original training time.

3.2. Hierarchical decision network

The second approach is not to choose a fixed number of
classes, but to use a phonetical tree, similar to the ap-
proaches in [4, 5], with the difference that here the goal
is to maximize the mutual information between some pho-

netical class and the label index of the winning neuron.
The basic structure of this approach is like the previous
one. There is a decision network, which decides which
of the second level networks are chosen. The main dif-
ference between this approach and the previous one is the
topology of the decision network. Here the decision net-
work has a hierarchical (tree) structure. The growing of
the structure itself is self organizing. This is done by using
a set of non disjunct phonetical classes. For each node all
class-splitting are tested, and the node which gives the best
mutual information is split up into two nodes, one contain-
ing the members of the found phonetical class and one with



the rest. This procedure is repeated, until the desired num-
ber of leaves is reached. With this tree structure one can
always find the phonetical class, that will improve the mu-
tual information best. The number of end nodes (leaves) is
predefined (as in the previous approach) and for each leave
a second network is trained, as in the first approach. An
example for this topology is given in Fig. 3.

In each node of the tree there is again a neural network.
The size of each network node is dependent on the amount
of training data for this node. For this work the first node
(root node) has an output layer size of 16.

The training of each network node consists of three
steps. In the first step the mutual information between the
actual phonetical class and the index of the output neurons
is maximized. In the next step one has to determine, which
of the output neurons belong to the class and which do not.
The decision is made by determining which class gets the
majority on each neuron. The third step is to repeat the first
two steps with every possible phonetical class, to find the
one, which is best in the actual node. This is performed for
all nodes, and the node which gives the best value for the
mutual information is expanded.

The structure of the second layer network is the same as
for the flat topology. Thus the computational effort for the
second layer is the same as above. The computational ef-
fort for the hierarchical decision tree depends on the num-
ber of phonetical classes used. In this approach 100 classes
were used. Those were e.g. vowel, front-vowel, fortis,
etc. (a phone itself was a class as well). With this number
of phonetical classes, the computing time for the decision
network is up to 70-80% of the baseline system. This is
because each class has to be tested in every node, whether
the split of the node gives an improvement in the mutual
information or not.

4. RESULTS

The results in this section were evaluated on the Resource
Management (RM) database. All results given here are
only for single stream monophone HMMs. This means
only the cepstrum feature vectors were used, first and sec-
ond order derivatives have not been used, as well as the
power features were not used. Thus the baseline results
are worse compared to the results presented in [1].

size of the
output layer 10 20 >0

_ Mutual 3.0622 bit | 3.0003 bit | 2.9845 bit
information

Table 1. Mutual Information for different network sizes of
a single layer decision network

Table 1 shows the value for the mutual information (on
a subset of the training data) according to the size of the
output layer of the decision network. It can be seen, that
the value for the mutual information drops, the larger the
output size is. This is because then there are many very
small networks in the next layer networks, which are to
small to improve the mutual information.

| System | mutual inform. | recognition rate |
Baseline MMINN 2.079 bit 75.62 %
Flat network 2.078 bit 74.99 %
Tree network 2.095 bit 75.75 %

Table 2. Performance of the different topologies

Table 2 shows the recognition rates for the baseline sys-
tem and the two new topologies. The recognition rate re-
ported is the average recognition rate (accuracy) for the 4
RM test sets (feb89-sep92). The first topology achieves
nearly the same value for the mutual information, but is
worse in recognition rate than the baseline system. With
the second, hierarchical approach, the value of the mutual
information is even higher than in the baseline case and the
recognition result is nearly the same.

5. CONCLUSIONS

The new topologies for MMINNSs are both faster to train
than the baseline system in [1]. The first approach is very
fast, and uses only about 15% of the training time. On the
other side, this approach leads to recognition rates, which
are about 0.5% (absolute) worse, than the recognition rates
of the baseline system. The second topology achieves the
same recognition rate as the baseline system (even 0.1%
better), and uses only 90% of the computational effort.
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