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ABSTRACT

This paper presents a novel method for modeling phonetic
context using linear context transforms. Initial investigations
have shown the feasibility of synthesising context dependent
models from context independent models through weighted
interpolation of the peripheral states of a given hidden markov
model with its adjacent model. This idea can be further
extended, to maximum likelihood estimation of not only single
weights, but a matrix of weights or a transform. This paper
outlines the application of Maximum Likelihood Linear
Regression (MLLR) as a means of modeling context
dependency in continuous density Hidden Markov Models
(HMM).

1. INTRODUCTION

Context dependent phones preserve inter-phonetic transitional
dynamics which often provide important cues for recognition.
However some of the potential advantages of context
dependent models are mitigated owing to training data
scarcity. 'This paper presents a novel method for modeling
phonetic  context using linear context transforms.
Conventionally the move from context independent models to
context dependent triphone models presents two major
obstacles: firstly, a lack of available training data and
secondly, the problem of unseen distributions. Initial
investigations have shown the feasibility of synthesising
context dependent models directly from context independent
models.  This is achieved through the use of weighted
interpolation of the peripheral states of a given hidden markov
model with its adjacent model. However it is possible that this
idea can be further extended to maximum likelihood
estimation of not only single weights, but a matrix of weights
or a transform.

This paper outlines the application of Linear Context
Dependent Transforms within an MLLR framework, as a
means of modeling context dependency in continuous density
HMMs. MLLR is an adaptation technique which has been
previously used for adaptation to speaker and environmental

variations [1] [3]. It involves using adaptation data to derive
broad-based general transforms. If only a small amount of
adaptation data is presented a few transforms are used for all
models in the system, and if more data is available the number
of transforms used is increased. A regression class tree is
employed to order the Gaussians in the system so that the set
of transformations to be estimated can be chosen according to
the amount and type of adaptation data available.

The utilisation of MLLR presented here deviates from the
application of conventional MLLR in that it is extended to
encompass the case of individual Gaussian distributions. This
is equivalent to a complete re-estimation of the output
probability distribution. Consequently, the required amount of
training/adaptation data dramatically increases. In this way,
model-specific or triphone-dependent transforms can be
estimated. The transformation matrices are calculated to
maximise the likelihood of the training/adaptation data, using
context dependent models, and can be implemented using the
Forward-Backward algorithm.

2. LINEAR REGRESSION TRANSFORMS

Initial investigations have shown the feasibility of synthesising
context dependent models from context independent models
through weighted interpolation of the peripheral states of a
given hidden markov model with its adjacent model. In this
way the means of a triphone can be generated from a
combination of monophone models. This is illustrated in
equation 1 where « and  represent linear weights for state 4
of the triphone ih-n+ah.
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Hip—n+ah (stated) = o, (stated) + ﬂ Han (state2) ( 1 )

The weights « and J are determined through the partial
differentiation of an error function E, with respect to o and 3,
where C, represents the mean Cepstral Coefficients of the
relevant state. The resultant simultaneous equations are then
set to zero and solved to find the optimal weights, o and S,
which minimise the error function E. In short, the weights are
derived to minimise the difference between an estimated
triphone and a weighted combination of monophones. Only



the means of states 2 and 4 of the triphone are synthesised,
with the variances and transition matrices as well as the mean
of state 3 coming from an estimated triphone. As an example
the linear weights for state 4 of triphone ih-n+ah would be
calculated using equation 2 as follows,

39
E = Z(Ck (stated(ih —n + ah)) — OL Ck(state4(n)) — ﬂCk (state2(ah)) )2 (2)
k=1

2.1 Regression Transform Approach

MLLR [1] [3] is a speaker adaptation technique which uses a
set of regression based transforms to tune HMM mean
parameters to a new speaker. It produces improvements with
small amounts of adaptation information by the sharing of
transformations and data. Each of the transformations are
applied to a number of HMM mean parameters and estimated
from the corresponding data.

A Gaussian distribution, S, is characterised by a mean vector,
Ui, and a covariance matrix, z;. Given a parameterised
speech frame vector, o, the probability density of that vector
and distribution S is given by,
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The adaptation of the extended mean vector is given by:
=W )

where,
e W; isan (nx (n+l)) transformation matrix,
1
. fj = [w,yl oy ,~--,yn] is the extended mean vector,

e o determines offset and can be either 1 (offset) or 0 (no
offset),

e and i ; 1s the adapted mean vector.

A separate transform for each Gaussian distribution, amounts
to a complete re-estimation of the output probability
distribution. However, the parameters of unseen distributions
still present an obstacle. If the same transformation is used for
several distributions and estimated using data from all tied
distributions, then unseen distributions can be taken into
account. The degree of transformation tying is determined by
the amount of adaptation data available. The total likelihood
of the model set A generating the observation sequence O, is
given by,

P(O|1) = Z P(0,6]1) 5)

where,

e O is an observation vector sequence of length T samples,

® 0=0,0,-,07 is a state sequence of length 7,

e 1 isthe current set of model parameters and,

e O is the set of all possible state sequences of length 7,
6eco.

The standard auxilliary function is adopted,

— S T
Q(/l,/l) = constant + P(Ol/l) > Zyj (f)logbj(o,) (6)
j=li=1

where,
e 1 is the re-estimated set of model parameters and,

* v (r) is the a posteriori probability of occupying state j at
time ¢ given the observation sequence O.

Model parameters which maximise the auxilliary function also
increase the value of the objective function unless it is at a
maximum. To find the maximum of the auxilliary function we
differentiate it ( for details refer to [1] ) and set the answer
equal to zero. This results in the equation,
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w b is computed row by row from the general equation,
N\
WiT =G(x) ZiT (8)

where Z is the LHS of equation 7 and G is the product of the
scaled covariance with the outer product of the two mean
vectors on the RHS of equation. Equation 8 can be solved
using LU decomposition or Gaussian elimination methods.

MLLR is presented here as a means of deriving context
dependent transforms. In this way, context dependent
mappings can be created for a 3 state single Gaussian per state
HMM,

Wipi" —pi ©)
where,
e W is the state dependent (n x n) transformation matrix,
° ujC[ is the state mean vector and

U ujCD is the newly adapted context dependent mean.

2.2 Context -Dependent Transforms

The Linear Regression Transform approach is similar in
essence to the least squares approach, however it differs in the
treatment of covariance's. Initially this method is applied to a
single mixture triphone system. It parallels the least squares
approach here in assuming that the shape of the distributions
of each acoustic class modelled, are identical. This results in a
simplification of equation 7 to the form,
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where,
e W; isan (nx n) transformation matrix and

T .
s ;= [#1 ,u2~~~,un] is the state mean vector.

2.3 Inversion of Transform

In order to compute VVJ we need to invert G(i) . Experiments
have demonstrated that this matrix may be ill-conditioned for
certain transforms, so even small round off errors that occur
during the inversion of a matrix can have a drastic effect on
the solution.

GOw! =z! (1D

Equation 11 is solved using LU decomposition and back
substitution. In this method of solution, round-off errors that
accumulate can be magnified to the extent that the matrix is
close to singular. Iterative improvement of the solution can be
implemented using equation 12,

Gsw =GOWwT +swhH-z] (12)

In solving for 6W and subtracting from the original estimate
there is a significant improvement in the solution obtained [4].

3. TREE BASED CLUSTERING

One of the major issues concerning tree based clustering is the
devising of an optimal data clustering strategy [2] [3]. In real
terms this is concerned with how to best cluster components in
such a way that they will all have a similar context
transformation matrix, thus incorporating the concept of data
redundancy. The clustering procedure is based on a measure
of similarity between the transforms, rather than defining a set
number of clusters to be obtained. A binary tree is constructed
and split based on the level of divergence encountered in any
given node. If the level of divergence falls below a defined
threshold in the given node, then the splitting procedure is
stopped. In this way the degree of similarity between matrices
can be examined at varying levels of clustering.

3.1 Clustering Algorithm

The clustering algorithm, which is based on a pairwise
distance measure, is outlined as follows :

1. In any given node, an average of all transform matrices
is calculated.

2. The matrix D, which is furthest away from the average
transform is then found. This will form the centre of
clustering for the right child of the tree node to be split.

3. Similarly, the procedure is repeated to find the matrix
furthest away from the matrix D found in step 2. This
will form the centre of clustering for the left child of
the tree node to be split.

4. All the matrices in the current node are then searched
and assigned to either the left or right child depending
on which has the greater degree of similarity.

3.2 Measure of Divergence

The clustering procedure is based on a distance measure, the
assumption being that acoustically similar models will be
statistically closer together. The measure used is given as,
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where A and B are the transforms to be compared and i and j

represent the dimensions of a transform. Equation 13 is

termed as the Frobenius norm and is used as a measure of the

comparability of two matrix transformations or the Mean

Squared Error.

4. EVALUATION

Using the least squares approach to synthesising context
dependent triphones resulted in an improvement of 2% from a
baseline of 57% recognition This was in a single mixture
gaussian monophone system using the TIMIT speech database.
The graph below details the results of synthesising the mean of
state 4 of the triphone ih-n+ah. For this case a was calculated
as 0.86084 and [ as 0.16995.

~ Triphone synthesised state 4(ih-n+ah)

6or 77 Triphone estimated stated

sof

a0

30 - \

i |

101 [

{
oF ~ P

-10 g
- ZU . . . . . . . !

20 25 30 3B 40

Cepstral Coefficients



Context dependent transforms were generated using the
training set of the TIMIT speech database. 9,573 three state
single mixture word internal triphones were used. The speech
features consisted of 13 MFCC’s supplemented with 1* and 2"
differentials. They were constructed using the HMM Tool Kit
(HTK). Transforms were only generated for models which
had 3 or more examples. This resulted in 19794 state
dependent context transforms.

Divergence Number of Clusters
20000 123
10000 217
5000 391
500 2157
10 15091

Table 1: The table above gives the clustering of context
dependent transforms based on a varying scale of divergence.

It was found that specifying high levels of divergence resulted
in an uneven distribution in the number of models per cluster.
A single cluster tended to dominate, containing the majority of
transforms. As the level of divergence or Mean Squared Error
decreased, the number of clusters increased towards the total
number of transforms (19794).
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The graph details the measure of similarity, or divergence,
against the number of clusters obtained. The key point in the
graph is that at which the level of divergence is such that
19794 clusters are obtained. This gives the lowest significant
difference between context transforms and is a measure of the
usefulness of this technique. As illustrated, this is achieved at
quite a low level of divergence, signifying quite a diverse

range of transforms.

5. DISCUSSION AND CONCLUSIONS

A new application for Maximum Likelihood Linear Regression
has been investigated. = The concept of cluster based
generalisation of context has been examined as a means of
transforming a context independent model or group of models
to a particular context. Through the employment of this
technique robust context transforms can be developed which
model the effects of context dependency. The potential
similarity of transforms is an indication of the redundancy in
the update mechanism for the mean parameters. This may
afford a large degree of parameter redundancy in the re-
estimation process. FHssentially, what the transforms attempt
to do is to capture the dynamics of the estimation process in a
form not previously examined. This allows the very
characteristics of context to be extracted and effectively
handles the problem of unknown distributions, as transforms
can be re-used for unseen models.

In this respect it has been found that the transforms generated
provided a generally poor degree of generalistion of context.
However this has to be weighed against the criterion which is
used as the benchmark for defining some significant
dimension of semblance between transforms. The significance
of the current measure is not entirely clear. It is useful,
however, as a first approximation. Other criteria are also
being examined such as the use of eigenvalues and
eigenvectors as a means of characterising a transform. This
would hope to yield a more fundamental definition. Further
addition to the current clustering procedure is the idea of
initial pre-clustering using linguistic knowledge. This would
have substantial gains computationally as it would help lessen
the already heavy clustering workload. Future research is also
being directed towards the possibility of synthesising triphones
from pairs of biphones through a process of weighted
interpolation. This would be beneficial from the point of view
of data availability as there is an abundance of biphones.
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