VECTOR QUANTIZER ACCELERATION FOR AN AUTOMATIC SPEECH
RECOGNITION APPLICATION

A.J. Araiijo'’, V. C. Pera', M. N. Souzda’

. 'FEUP — Faculdade de Engenharia da Universidade do Porto
“INESC — Instituto de Engenharia de Sistemas ¢ de Computadores
Pr. da Repiiblica, 93 — 4007 Porto Codex — Portugal
E-mail: aaraujo@picasso.inescn.pt, vpera@te.up.pt
*UFRJ — Universidade Federal do Rio de Janeiro

ABSTRACT

For a real-time application of an automatic speech recognition
system, hardware acceleration can be the key to reduce the
execution time. Vector quantization is an important task that a
recognizer based on discrete hidden Markov models must
perform. Due to the amount of floating point operations
executed, the vector quantizer is an excellent candidate to be
accelerated by customized hardware. The design,
implementation and obtained results of a hardware solution
based on field programmable gate array devices are presented.

1. INTRODUCTION

The usage of Automatic Speech Recognition (ASR) in real-
time applications demand increasingly faster processing. In
particular, the most computationally intensive algorithms need
to be accelerated as much as possible. This is the case of
Vector Quantization (VQ), a time consuming task in ASR
applications based on discrete hidden Markov models
(DHMMs) [1]. One way of achieving this acceleration is by
using optimized custom computing machines in terms of data
formats and arithmetic operators needed. This approach was
used in the Vector Quantization Processor (VQP) based on
Field Programmable Gate Arrays (FPGAs) we developed.

Next section describes the ASR application implemented
emphasizing the VQ step. Section 3 presents the architecture
of the VQP and describes its implementation in a board
equipped with XILINX FPGAs. Obtained results are presented
and discussed in section 4. Finally, section 5 shows some
conclusions about the work presented and remarks on future
improvements that can be made.

2. THE AUTOMATIC SPEECH
RECOGNIZER

2.1 General Description

The recognizer can be viewed as performing a sequence of
operations according to the block diagram of figure 1. Speech
is first submitted to anti-aliasing filtering, sampled at 11025
Hz and pre-emphasized with a first-order filter of the form
(1-0.97z"). This signal is segmented into 23 ms Hamming
windowed frames with an overlap of 14 ms between
consecutive frames. For each frame, a set of 22 mel-scaled
triangular bandpass filters is applied to the short-time power

obtained by a 512-point FFT. Using a discrete-cosine
transform, 12 mel-frequency cepstral coefficients are
computed from these filterbank log-energies and then
submitted to a sine-liftering window [4]. After the cepstrum
mean subtraction, these coefficients plus the normalized
energy term and their first derivatives form each 26-D vector.

input
speech

feature
FEATURE | vectors

scalars
stream

recognized
string
DECODER [=——>

VECTOR

ANALYSIS QUANTIZER

Figure 1: A block diagram of the speech recognizer.

After the quantization (section 2.2), the decoding is carried out
by the one-stage algorithm extended with a level building
procedure [5] to account for a previously known string
length. For each digit, modeled by one DHMM with 5-state
Bakis topology, duration statistics assuming a gaussian
distribution are used.

For training, each model was first seeded running 4 iterations
of the Baum-Welsh algorithm [1] over 100 samples from the
TI database [6]. Then, an embedded 4 iterations of the Baum-
Welsh algorithm was performed over 600 5-digits strings.
Tests done on 100 5-digits strings from the same database
resulted on 94.2% digit accuracy.

The ASR was implemented in C language and the results that
we will later present were obtained running it on a Pentium
MMX PC at 266 MHz.

2.2 Vector Quantization

In the ASR application the VQ operation deserved our
particular attention. It transforms each feature vector V into a
scalar i* using a codebook with dimension N=256 previously
calculted by the LBG clustering algorithm [1]. For each
vector V this module outputs the index i* of the closest
codevector C®. As a distance measure on the D=26 dimension
space the Euclidean norm was used.

3. DESIGN AND IMPLEMENTATION OF
THE VECTOR QUANTIZER

3.1 Introduction

The time spent with the VQ can be decreased with a dedicated
hardware implementation. The float type used in the ASR C
source code is the shortest available format for real numbers,
presenting an excess of bits for the required precision of data
values. Using a reduced format for floating point values
allows an acceleration of the algorithms that implement the
floating point operators.

VQP was developed to implement the VQ operation working
as an auxiliary processor of a host computer where the ASR
application runs.

3.2 Architecture

Figure 2 shows the designed architecture. It closely maps in
hardware the VQ algorithm: initially, the host stores the
codebook into a RAM to be used by the VQP and, for each
feature vector, the squared FEuclidean distance to each
codevector is computed and the index of the closest one is
returned to the host.

Figure 2: VQP architecture.

The main blocks of QP are described below.

Floating point core. This is the largest module of VQP, where
floating point computations are performed. It appears in figure
2 with the name of SSAC (Subtract-Square and ACcumulate).
As a measure of distance the square of the Fuclidean distance
is enough, requiring a subtracter, an adder and a square
function. Figure 3 shows the computation chain with registers
to permit a pipeline operation with a three clock cycle latency.

>
e —

,_,
Q@

Figure 3: Floating point unit.

The complete algorithms for floating point operators that were
implemented are well known and can be find in [8,9,10]. The
adder/subtracter units are more complex to implement than the
multiplier [9], contrasting with what happens with the
corresponding integer arithmetic units. As a consequence of
this the implementation area is higher and the speed of the
circuit is lower.

The x2 operator limits the clock frequency of the floating
point unit. By this reason several optimizations were
introduced. It was implemented by a multiplier that uses an
optimized integer square function to perform the square of
operand’s significand [6]. The critical path occurs in the carry
propagation chain of this operator. Another optimization was
introduced by using the fast carry logic [7] feature available
for XILINX 4000E FPGA family. Figure 4 presents an extract
of the square operator schematic mapped into the FPGA
resources, showing the carry chain (dotted lines) with
dedicated input/output (CIN, COUT) ports.

: 5 ; [:
| e 1
. e | T
i B GRD i i
» T C A ; U s "
Alocenzaca | : locenzocs
854 | 55 WS L

Cy4 B amEE] : CY4

tout| amtE]

cout

LENEES)
A1 64> COUTO—
B0 (F2)
40 CF1s
40D CF33

L1 ca1
L 41 c6ay couto|—:
—— B0 cF2)

A0 CF1)
aDD tF3)

a3
as3

a5
! oess . -

BESEEE

Figure 4: FPGA mapping using fast carry logic.

Figure 5 shows the customized 16-bit wide floating point data
format consisting on 9 bits for significand field, 6 bits for the
exponent and the remaining bit for the signal. With this format
the range of representable real numbers is from

+9313x107 010 48582107

bys| by .. bg|bg by
L1 1L |
S e f

Figure 5: Floating point format.

Memory organization. The RAM block that we see in figure
2 has a size of 13 Kbytes and is used to store de codebook. It
is written at system start-up. Due to intensive access of each
feature vector during the squared distance computation, it is
loaded on a cache memory implemented in the FPGA. This is

possible by using the XILINX 4000E internal RAM feature [7]
using the LogiBLOX module generator of XILINX M1 tools.
This cache consists of two independent RAMs of
26x16 =416 bits. While one of these RAMs holds the vector
under processing, the other one is loaded with the next vector.
Therefore, when the processing of the current vector finishes,
the roles of the two RAMs are inverted and the VQP doesn’t
need to wait for a new incoming vector to initiate a new
computation.

Input/Output. For each feature vector, VQP returns an index
that indicates the closest codevector. The control unit sets the
initial index to the first entry in the codebook and updates it
whenever a closest codevector is found. The host computer
receives the computed indexes needed to the decoding task
that is performed by the last phase of the speech recognition
application.

3.3 Implementation

The implementation of VQP was done using reconfigurable
logic circuits of type FPGA. They offer a short design cycle
time and its reconfigurability feature can be explored to adapt
the existing hardware to different data formats and to other
dimensions of feature vectors.

22

H 3 32 ’
| 1 y
1Mx8bits 32 21 2% 128Kx8bitl, 8
gt xi X3)

address

: XCA0xxE XCA0xxE %
2 8
PG191/223 |2z 2 x 128Kx8bit] PG191/223
X - .
XC40xxE o CRbus decoder

PG191/223
21 2 x 128Kx8bit|
2 X2 8 g X4 N
24
e
XCA0xxE k] g | XC40xxE .
PG191/223,.| 21 2x 1281$\xsb1t PG191/22%
Ju t ¥ Tt
k7)

i

22 |

address decoding
X0 configuration

Figure 6: The RVC board supporting two instances of VQP.

The RVC board. For VQP's implementation we used RVC
(Reconfigurable Vector Co-processor), a general purpose
reconfigurable system, essentially developed for vector

processing applications [11,12]. In figure 6 we can see the
organization of RVC. It is composed of a PC expansion board
with five XILINX FPGAs, two 4010E-4 and three 4013E-4
[7], and is equipped with 1 Mbyte of fast RAM intended to
work as vector memories providing a fast access for
computation units running in the FPGAs.

The system is configured by a program running in the host
computer, that downloads the configuration bit-stream for
each FPGA, whenever hardware reconfiguration is needed.
Although equipped with the referred FPGAs, the board is
compatible with any FPGA of the XILINX 4000E family.

Partitioning on RVC. The RVC available resources allow
two VQP instances to operate in parallel. Figure 6 illustrates
the instantiation of VQP blocks in RVC FPGAs. While X1 and
X3 hold one VQP, the other VQP instance is distributed by X2
and X4. In the top of the hierarchy, X0 generates the top level
control for the whole system and interfaces with the host bus.
An ISA interface was used, and in spite of its low transfer data
rate, it does not introduces any time constraint on data
transfers because the time spent with computation is greater
than the one wasted with data flow. To give an idea of FPGA
occupation, X3 and also X4 are about 80% occupied, with the
arithmetic operators, corresponding to approximately three
quarters of the total area.

Task scheduling. Figure 7 helps to understand how the VQP
units work in parallel, showing the main data flow that occurs
in FPGAs X0, X3 and X4.

12 3412 563 4 785 i-4 i3 4 i+1§-24-1
X0 @ ﬁ
1 3 1 5 3 7 5 i-4 i i-2
i B & EE A i
X3
2 4 2 6 4 8 1-3 it+1 1-1
g
X4
B Lowd v s T tme 4<i<300
ﬁ Calculate jz;;o(xj'}’j)z
ﬁ Return Index(¥)

Figure 7: Sequencing the main operations in the FPGAs.

The influence of cache usage (see section 3.2 about memory
organization) can be observed in this temporal sequence.
While a vector V;is loaded into X3, the vector J;_, is being

processed, and at the end of this, the processing of V; starts in

parallel with the return of the V;_, computed index.

4. RESULTS

The experiments we used to compare both software and
hardware solutions consist of a set of 300 feature vectors,
extracted from a speech signal corresponding to a string of
five continuously spoken digits. Each one of these vectors
consists of 26 floating point numbers. The time spent to
process each vector (compute the squared distance to each
codevector and generate the index of the closest one) is
approximately 256x(26+4)x143ns=11ms. The term 4 is
due to the three pipeline stages included in the SSAC unit and
one additional clock cycle needed to output the index.

An important conclusion that we can take from the temporal
diagram shown in figure 6 is that the initial loads of }] and

V5, and the final result retrieved forJ3q , are operations that

consume an insignificant time when compared with all the
other operations. So, we can ignore this time to deduce the
total time (330 ms) needed to process the set of 300 feature
vectors.

Since the implementation described uses two VQP units
working in parallel the total time to process this entire set is
115 ms. In each clock cycle of a VQP, three operations
(—,x2,+) are performed, so a total of 42 MFLOPS is achieved

by the entire system.

Module . Time (s) ... Reduction (%)
SW HW
vQ 2.510 0.115 95
ASR 7.240 4.885 33

Table 1: Improvements on the execution time of VQ and
ASR.

Table 1 shows the execution time results for software and
hardware implementations of the VQ module. It also shows
the impact of these results on the overall ASR system, where
the VQ effort is approximately one third.

5. CONCLUSION

A hardware solution was presented to accelerate execution
time of an ASR application. An implementation of the
architecture was performed on an FPGA based platform. The
resources available on this system allow an implementation
with two computation cores working in parallel. A very
significant reduction of the execution time was achieved,
allowing the VQ module to be 22 times faster than the
software solution. Features like modularity and scalability of
the architecture of VQP were emphasized, since they can be
explored to obtain a VQ with several VQPs working
concurrently to increase the system performance.

The main system clock limitation is due to the floating point
arithmetic operators. Future work is planned to increase the

performance by using pipelining techniques that will improve
the data throughput.

6. REFERENCES

1. J. Deller and J. Proakjs, Discrete-Time Processing of
Speech Signals. Macmillan Publishing Company,
1993.

2. K-F. Lee, Automatic Speech Recognition: The
Development of the SPHINX System. Kluwer
Academic Publishers, 1989.

3. R. G. Leonard, “A database for speaker independent
digit recognition,” in Proceedings of the IEEE
International Conference on Acoustics, Speech and
Signal Processing, March 1984.

4. P. Loizou and A. Spanias, “High-performance alphabet
recognition,” IEEE Transactions on Speech and Audio
Processing, vol. 4, pp. 430-445, November 1996.

5. L. Rabiner and B.-H. Juang, Fundamentals of Speech
Recognition. Prentice Hall, 1993.

6. A. Eshraghi, T. S. Fiez, K. D. Winters, and T. R.
Ficher, “Design of a new squaring function for the
Viterbi algorithm,” IEEE Journal of Solid-State
Circuits, vol. 29, pp. 1102-1107, September 1994.

7. Xilinx, The Programmable Logic Data Book, 1996.

8. D. Goldberg, “What every computer scientist should
know about floating point arithmetic,” ACM
Computing Surveys, vol. 23, March 1991.

9. N. Shirazi, A. walters, and P. Athanas, “Quantitative
analysis of floating point arithmetic on FPGA based
custom computing machines,” in IEEE Symposium on
FPGAs for Custom Computing Machines, pp. 155-162,
IEEE Computer Society Press, April 1995.

10. A. R. Omondi, Computer Arithmetic Systems -
Algorithms, Architecture and Implementations.
Prentice Hall, 1994.

11. J. C. Alves, A. Puga, L. Corte-Real, and J. S. Matos,
“FPGA implementation of a vector processor for the
estimation of higher-order moments,” in Proceedings
of the XII Design of Circuits and Integrated Systems
Conference, pp. 759-763, November 1997.

12. J. C. Alves and J. S. Matos, “RVC — a reconfigurable
coprocessor for vector processing applications,” in
Proceedings of the 6" Annual IEEE Symposium on
FPGA Custom Computing Machines, April 1998.

