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ABSTRACT

This paper explores possible strategies for the recombination
of independent multi-resolution sub-band based recognisers.
The multi-resolution approach is based on the premise that
additional cues for phonetic discrimination may exist in the
spectral correlates of a particular sub-band, but not in another.
Weights are derived via discriminative training using the
‘Minimum Classification Error’ (MCE) criterion on log-
likelihood scores. Using this criterion the weights for correct
and competing classes are adjusted in opposite directions, thus
conveying the sense of enforcing separation of confusable
classes. Discriminative re-combination is shown to provide
significant increases for both phone classification and
continuous recognition tasks on the TIMIT database.
Weighted recombination of independent multi-resolution sub-
band models is also shown to provide robustness
improvements in broadband noise.

1. INTRODUCTION

In recent years there have been a number of papers on sub-
band based speech recognition [3, 4], inspired by Allen’s
paper reviewing the earlier work of Fletcher [1]. The central
conclusion of this work is the proposition that the human
auditory system relies on the recognition of independent
spectral-temporal features. The multi-resolution approach
extends the purely sub-band approach by supplementing,
rather than substituting, conventional full-band MFCC’s with
more detailed sub-band cepstral features. Experimentation
with multi-resolution cepstral features based on concatenation
of cepstral vectors from a number of sub-bands, outperforms
conventional MFCC features for the continuous phoneme
recognition task on the TIMIT database [2].

As an extension to this earlier work, a new approach
presented and evaluated in this paper is to combine the log-
likelihood scores of independent sub-band acoustic models. As
a result of such an approach a number of issues need to be
addressed, including possible strategies for the recombination
or merging of the individual sub-band/model recogniser
scores. While non-linear recombination has been explored via
the use of a ‘Multi Layer Perceptron’ (MLP) [3], the approach
adopted here is the principle of linearly weighting confidence
for each sub-band recogniser according to its discriminative

potential, based on the premise that additional cues for
phonetic discrimination may exist in the spectral correlates of
a particular sub-band, but not in another. The recombination
weights should ideally reflect the contribution of each sub-
band for discrimination of a particular class. In keeping with
this principle, weights are derived via discriminative training
using the ‘Minimum Classification Error’ (MCE) criterion on
log-likelihood scores. Using the MCE criterion, weights for
the correct and competing classes are adjusted in opposite
directions, thus conveying the sense of enforcing separation of
confusable classes

This principle of deriving recombination weightings can be
extended to derive state-based weights for each multi-
resolution sub-band hidden markov model. This is to
acknowledge that the spectral information across sub-bands
will be different for the states of a multi-resolution HMM .

Extending the multi-resolution cepstral decomposition from
the feature space to the model space also gives the possibility
of improving robustness in noisy conditions by exploiting
variations of sub-band SNR to weight the reliability or
confidence of the partial information from each recogniser.
We present some results which demonstrate this advantage in
white noise.

2. MULTI-RESOLUTION SUBBAND
FEATURES

LetE =[E,,E,,...,E;] be asequence of log mel-filter bank

energy vectors. Cepstral features are derived from a linear
transformation of

X, = AE, (1)

A is conventionally the DCT, but it can be a general
discriminative feature transform [5]. Multi-resolution feature
vectors are a set of feature transformations such as

Xr = [AOEN (AllErM’ AllEr12)7(AllEr21 ’ AQQErQQ ’ A‘BErB’ A24Er247)' . ']T (2)

A E, yields the cepstral features over the whole bandwidth,
(AE , AE) yield cepstral features over, the lower half and

the upper half subbands, and (A4.E,, AE,, AE, A.E,)
yield the features over four subband quadrants and so on.



3. MODEL RECOMBINATION
STRATEGIES

3.1 Discriminative Class Based Weightings

Consider the multi-resolution subband cepstral feature vectors

X (9 {r=1,..,R; b=l1,..,.B;} where r identifies the resolution
level and b the sub-band index within that resolution (for r=1
indicating the full band, B=1). If we associate independent

models Mgrb) for each band b within resolution r, the

combined log likelihood for class j can be given as

R B,
b 1 b
logp(X[M)) =X ¥ 0™ logpX™ M) (3)

r=1b=1

(1b)
i
reflect the discriminative potential or confidence of each sub-

The multi-resolution sub-band weights @ " should ideally

band for a particular class. Fully independent models Mgrb)

will have separate state transition probability matrices.
However for our initial experiments the state transition
probabilities are effectively tied for the sub-band models of

each phoneme. In keeping with this principle we propose to
(1b)
i

minimum classification error (MCE) criterion eg. [5]. Let

perform discriminative training of the weights ®: ‘using a

(rb)

Bj

(X)) = log p(X ™ [M{™) “

describe the partial recognition score for a sub-band vector

X @) given a sub-band model, we define the log-likelihood
score of the full parameter vector belonging to class j as

R B,
b b 1
g,(X) =22 o™B™X™) 5)
r=1b=1

Let a misclassification measured, (X) for a training vector

belonging to class k be given by
d, (X)= _gk(X)+H,1:Lng(X)
i

=2 (X)+g,(X)

(6

where 1 represents the model with the nearest score ie. the
most confusable class. A loss function can be defined [5] as a

sigmoidal function of d, (X)

1
LX) = Y

The loss function is minimised for each training vector by
adaptively adjusting the sub-band model weights, according to

(Dn+1 —o'—¢ BF(X)
dm™

®

where " is the parameter value after the n™ iteration,

BF(X)/ " is the gradient of the loss function and € is a

smalll positive learning constant. For the sake of brevity the
weight update equations are quoted without direct derivation of
the gradient function as follows, for X belonging to class k and
1 being the most confusable class.

@{PhH = ) _ o1 (X)[T (X) - 1B (X)) (92)
P = P+ 4 (I (XN (X) ~ DB (X™) (9b)

3.2 Discriminative State Based Weightings

The issue of at which segmental level to recombine log-
likelihood scores is one which has as yet proved inconclusive
[3]. The recombination criterion at a model level outlined
above is advantageous for phoneme classification, but does
not address the issues raised with regards to continuous speech
recognition.

The MCE criterion outlined above can be extended to derive
state based weightings for each sub-band model, which in turn
can be applied as state based stream weights, thus allowing the
discriminative multi-resolution weights to be used within the
standard HMM framework for continuous speech recognition.
Given the sequence of multi-resolution feature vectors

X =x™ x ™ xi™ (10)

the optimal state sequence for a sub-band model j is defined as

b
e = [61,0,.0....01] (11)
such that O represents the state associated with feature vector
XEIb) . Without taking into account the state-to-state transition
probabilities, the partial classification score for X , given a

sub-band model j and state segmentation @grb) is then

T
(1b) 4 (1b) g (1b) (), L (1b) o (1b)
B (x™ of ):ijfe‘ logBjg (X{") (12)

where ® grib)

j for sub-band b (of resolution r) and state i. If T1 j is defined

represents the linear weight associated with class

to represent the set of time indices such that the state
association of the feature vector XEIb) belongs to state i, and

where N represent the number of states in the model k, i.e.



T, ={tl6, =i} 2<i<N-1, 1<t<T (13)

The weight update equations of (9a) and (9b) are refined to

oagi’)’““ = wf{r}i’)’“ — (T [Ty — 1) Y log Bg‘? (X)) (14a)
teT,

@I = IPMN 4 g(T [T ~ 1)) Ylog B

e B (X(™)) (14b)
teT |
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3.3. SNR Weighted Recombination

An advantage of splitting the spectral information into sub-
bands is that variations in sub-band SNR may be exploited for
improved recognition in noisy conditions. Thus by weighting
the confidence in each multi-resolution sub-band stream
according to its SNR, the influence of low SNR information
can be reduced with a corresponding shift to reliance on partial
recognition from higher SNR regions of the spectrum. Thus
equation (3) can be refined to

(1b)

(1b)
j (SNR;

R B,
logp(X|Mj = o Jlogp(X® (™) (15)
r=1b=1

where (J.)grb) (SNRgrb)) specifies the sub-band weighting to be

a function of the local SNR (for band b in resolution level r) for
model j. We initially have experimented with Weiner -type
weightings of the following form

(b)
Sj

(rb) _
bl Sgrb) LN (16)

Sgrb) defines the signal power in sub-band b of resolution r for

the phoneme class j. This value is obtained experimentally by
averaging the energy within each sub-band over all occurrences

N

of each particular phoneme across the TIMIT database.
specifies the noise energy within a sub-band. As the spectral
characteristics within each state of a phonetic HMM are
different a refinement to the weighting functions would be to
make them, not only model dependent, but also state
dependent.

4. EVALUATIONS

The performance of the multi-resolution cepstral feature set
was tested on the TIMIT speech database using 39 context-
independent 12 mixture HMM models for each multi-
resolution sub-band. The full TIMIT training and test sets
were used throughout, with the exception that classified
phonemes of less than three frames were excluded from the
experiments. Previous experimentation [2] showed that while
supplementing the full band cepstra with either 2 or 4 sub-
bands gave improved results, use of both resolution levels was

seen to yield no further advantage. For the purpose of these
experiments therefore, three multi-resolution bands are used -
a full band supplemented with two sub-bands.

4.1 State-Independent Weighting of Multi-
Resolution Sub-bands

Table (1) gives results for phoneme classification using
independent multi-resolution sub-band models, along with the
sub-band boundaries implemented. The fourth row indicates
the linear recombination of all three multi-resolution bands.
The rightmost column of the table shows the results of
discriminatively weighting each sub-band class with twelve
epochs of MCE criterion based via the strategy outlined in
Section 3.1. The column headed ‘Cepstral Analysis’ indicates
the number of mel-filtered cepstral coefficients extracted from
each band before delta and acceleration coefficients are
appended. One point of interest is that the classification results
improve even for sub-band only discrimination, showing the
potential for between band discrimination. Multi-resolution
sub-band recombination is shown to yield an increase when
each band is given equal weightings, and when combination is
based upon discriminatively trained weights, the final
improvement in classification score is significantly above the
original full-band MFCC classification score.

Bandwidth | Cepstral Equal MCE Derived
(kHz) Analysis | Weightings Weightings
0-7.9 13 65.62 67.6

0-2 (@) 56.72 58.4
2-79 (@) 44.05 453
0-7.9,0-2,2-7.9[(A3)+(7,7) 67.04 70.0

Table (1) "TIMIT State-Independent Classification Results'.

Bandwidth (kHz) Cepstral Recognition (%)
Analysis
0-7.9 (13) 68.8
0-2,2-7.9 (1,7) 69.9
0-7.90-2,2-7.9 (13)+(7.7) 70.6

Table (2) Concatenated Cepstra Recognition Results

4.2 State Dependent Weighting of Multi-
Resolution Sub-bands

Table (2) shows the results for models trained using
concatenated multi-resolution cepstral feature vectors, with
Table (3) giving results when weighting independent multi-
resolution sub-band model states for continuous phoneme
recognition. State based weights were trained on classified
data as outlined in Section 3.2 using twelve epochs of
discriminative training. As demonstrated by Table (2), there is
some improvement in performance using sub-band cepstral
features alone, compared to the full bandwidth cepstra, with
further improvement in recognition performance when the
multi-resolution features sets are employed.



Bandwidth (kHz) Cepstral Recognition (%)
Analysis
0-7.9,0-2,2-7.9 (13)+(7,7) 70.21
0-7.9%,0-22-7.9 (13)+(7,7) 72.9
0-7.9%,0-2%2-7.9 (13)+(7,7) 73.0
0-7.9%,0-2% 2-7.9% (13)+H(7.,7) 72.4

Table (3) Weighted Independent Stream Recognition Results

Cepstral Concatenated Equally Wiener-
Analysis Features Weighted Weighted
Streams Streams
13 37.1 - -
a,n 35.9 34.7 40.0
a3»+3,1 377 36.6 44.4
(5,542 34.6 335 36.5
(13)+(5,5.4,2) 36.0 36.0 44.2

Table (4) Recognition Results in Noise

The first result of Table(3) is produced when all the model-
dependent state weights are set equal to unity. For the
remaining results, an asterix beside the sub-band boundary
indicates that discriminatively trained stream weights were
applied to that multi-resolution sub-band whilst the other sub-
bands were left unweighted. One point of interest is that while
weighting one or two bands offers an improvement in
performance, weighting all three bands offers no further
improvement, attributable to the fact that the sub-band weights
are trained independently of each other and may be at times
conflicting. Nonetheless the state-based model weighting
achieves a further significant performance improvement
beyond that produced by using straightforward concatenated
multi-resolution feature vectors over full-band MFCCs.

4.3 Independent Stream Weighting in Noise

We have experimented using the fixed Weiner type weightings
(16) for recombination of independent multi-resolution sub-
band streams according to (15) for continuous recognition.
The results are for performance in white noise with a signal to
noise ratio of 15dB.

In obtaining values for the stream weights of each phonetic
HMM, the sub-band signal powers for each monophone were
averaged over their occurrences across the full TIMIT training
set. Whilst the weights are model-dependent, for these initial
experiments they are initially the same for each state within a
model. The results quoted are based on the core TIMIT test
set. The results indicate the benefits of separate sub-band
model weighting over concatenated multi-resolution feature
vectors in improving on the MFCC score. The advantage of a
multi-resolution as opposed to a purely sub-band approach is
also seen. The number of sub-bands used does not change the
weighted multi-resolution result significantly. The application

of state-based weights is still to be explored along with the
possibility of time-varying weights for non-stationary noise.

5. CONCLUSIONS

Multi-resolution sub-band cepstral features strive to exploit
discriminative cues in localised regions of the spectral domain
by combining HMM models trained on full band-width
cepstral features with HMM models trained on cepstral
features derived from several levels of sub-band
decomposition. Linear weighted recombination of these
independent classifiers is shown to outperform conventional
MFCCs for phoneme classification on the TIMIT database.
The recombination weights should ideally reflect the
contribution of each sub-band for discrimination/recognition
of a particular class. In keeping with this principle, weights
are derived via discriminative training using the ‘Minimum
Classification Error’ (MCE) criterion on log-likelihood scores
at both a class and state level. Discriminatively weighted
recombination yields a further improvement for TIMIT
phoneme classification, while state-dependent stream
weighting offers a similar improvement for continuous
phoneme recognition. By exploiting the sub-band variations in
signal to noise ratio for linearly weighted recombination of the
log likelihood probabilities improved phoneme recognition
performance in broadband noise is also obtained. This is an
advantage over a purely sub-band approach using non linear
recombination which is robust only to narrow band noise.

Recent papers [5] have shown that using discriminative
methods such as the MCE criterion to derive optimal linear
transforms is superior in performance to using a global fixed
linear transform such as the DCT. This, coupled with the
extension of the multi-resolution model from the spectral
domain into both the spectral and temporal domains,
beginning with the discriminatively weighted inclusion of
segmental models into the multi-resolution framework, will
provide the direction of research for the near future.

6. REFERENCES

[1] J. Allen, “How Do Humans Process and Recognise
Speech?”, IEEE Trans. on Speech and Audio
Processing, Vol. 2, No. 4, 1994, pp. 567-577

[2] P. McCourt, S. Vaseghi, N. Harte , “Multi-Resolution
Cepstral Features for Phoneme Recognition Across
Speech Sub-bands 7, Proc. ICASSP-98, Vol.1, pp.577-
580.

[3] S. Tibrewala & H. Hermansky, “Sub-band Based
Recognition of Noisy Speech”, Proc. ICASSP-97, Vol.
2, pp- 1255-1258.

[4] H. Bourlard, S. Dupont, H. Hermansky, N. Morgan,
“Towards Sub-Band based Speech Recognition”, Proc.
EUSIPCO-96, pp. 1579-1582

[5] R. Chengalvarayan & L. Deng, “HMM-Based Speech
Recognition Using State-Dependent, Discriminatively
Derived Transforms on Mel-Warped DFT Features”,
IEEE Trans. ASSP, Vol. 5, No. 3, 1997, pp. 243-256



