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ABSTRACT

This contribution presents part of the work initiated at the CTT
for the development of speech technology to assist non-native
speakers learn Swedish. This study focuses mainly on the
automatic location of mispronunciations at a phonetic level.
We first describe the database we created for this work and then
report on the reliability of several phonetic scores to
automatically locate segmental problems in student utterances.

1. INTRODUCTION

Over the last decade, advancements in speech technology have
opened up new possibilities for interactive language teaching
systems [1,7,10,11]. And more recently, a growing number of
studies have addressed the problem of automatically rating non-
native speakers by providing measurements that can be
correlated with human judgment [3,5]. These studies show that
rating a speaker on a 5-point scale can be achieved with
performance inversely proportional to the size of the speech-
unit rated. In other words, speech technology is mature enough
to grade a speaker globally and seems capable of grading
individual sentences. Despite an interesting implementation [8],
it is not yet clear whether speech technology is suited to rate
individual words. Furthermore, few studies have reported
results on grading individual phonemes [5,6,12,13]. Although
this task is quite challenging, we do believe that a system
capable of grading pronunciation at a phoneme level is a
prerequisite for a useful stand-alone pronunciation trainer.
Therefore we address in the following the automatic rating of
individual phonemes using speech recognizer outputs.

2. DATABASE
2.1. Speech Material

Twenty-one non-native speakers of Swedish, including 6
females, participated in this research. All hold an engineering
degree from their respective universities. Each speaker was
asked to read isolated words as well as a full text. The reading
material, as chosen by teachers of Swedish, included 1) all
Swedish vowels (long and short) at least once; 2) all consonants
in all initial, medial and final position. The text (17 sentences
with an average of 17 syllables each) was selected to provide
easy reading for low-skilled students of Swedish. Each speaker
pronounced 110 isolated words (59 mono-, 50 bi-, and 1 tri-
syllabic words), with 20 of them being uttered twice. First, the
students were asked to read the words and the text silently and
then given the opportunity to ask questions about the possible
pronunciation problems they might encounter. Their utterances
were recorded on analog tape during a classroom test.

2.2. Transcription

Experts then transcribed the material. A user interface was
developed for this purpose, thus providing experts with
classical and specific annotation tools (automatic phonetic
alignment, pitch extractor, signal display, common errors, etc.).
As pointed out by [2], very little is known about the human
scores used as references in previous studies. Therefore, we
asked the experts to be aware of the different parameters that
could influence their ratings. For instance, each expert was
asked to distinguish between prosodic and phonetic quality
during the entire transcription process. Furthermore, the expert
modified the standard phonetic transcription provided for each
item by a text-to-phoneme processor [4] to reflect the phonetic
deviation. Each phonetic deviation was rated on a scale of 1 to 5
(from “horrible” to “not really deviant™). More information on
the transcription process is given in [6]. For the time being,
only one expert has transcribed enough material to be
considered in this study. This expert has a strong background in
phonetic science and is involved in foreign language learning.
She has transcribed 8 text-sessions (about 800 phonemes each)
and 6 word-sessions (close to 400 phonemes each).

2.2. Expert feedback

It appears that the task of transcribing is much more complex
and time-consuming than was initially expected. To ensure
consistent ratings throughout her work, the expert felt that she
often needed to go over several times item which had already
been dealt with and even review work she done in previous
sessions. The expert also pointed out that rating sentences is
easier than rating isolated words and expressed difficulty in
giving an overall rating to each speaker session. As part of our
future research, we will check the consistency within and
between the different experts' judgments.

2.4. Error analysis

The greater the segmental error, the easier it is to detect [6].
Hence, we will discuss the distribution of vocalic errors
observed in our corpus regardless of the mother-tongue of the
speaker. We must first point out that a specific error doesn't
necessarily receive the same rating. For instance, the vowel [a:]
pronounced as [a], was graded three times as 1, twice as 2 and
once as 3. This is due to the fact that the expert's judgement
was influenced by the context in which the error occurred
(syllable, function/grammatical words, etc.). The influence of
the context, and what is actually understood by context, is still
open for debate and cannot be investigated yet due to lack of
data. However, it is a rather important issue given that the task
consists in matching automatic scoring with the evaluations of



experts. The distribution of vocalic errors is reported in figure
1. Each error is indexed as a single value (called sp-index)
representing its position in the classical 3-dimensional feature-
vowel production space: the degree of opening (close, close-
mid, open-mid and open), the front/back dimension (front,
central and back) and the lip-rounding dimension (rounded or
not). Each deviation of one unit in any of these three
dimensions scores a 1 and the sp-index of an error is computed
as the sum of the deviations for each dimension. For instance,
the error [a]/[o] is indexed as 3 since these two vowels differ by
two units in the front/back dimension (front vs. back) and by
one unit in the opening dimension (open vs. open-mid).
Looking at the error distribution, we observe that most of the
errors in our corpus deviate in only one of the three feature-
dimensions, as is the case for the close-mid/open-mid error

[o)/[>].
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Figure 1: Distribution of vocalic errors as a function of sp-
index (see text explanations).

3. EXPERIMENTS

In this work, we investigate the usefulness of acoustic scores
provided by a speech recognizer to identify whether vowels are
deviant or not. For that purpose, we used several sets of context
independent phoneme models trained on a native clear-speech
corpus of 2100 sentences. Two different types of feature vectors
were evaluated: standard static Mel frequency cepstrum
coefficients (MFCC) and dynamic mean cepstrum subtraction
Mel frequency cepstrum coefficients. The latter should perform
better when there is background noise or when there is a
significant mismatch between the training and target data,
which is the case with our non-native corpus (clear speech vs.
cassette recorder). Due to practical issues, we have not yet
investigated contextual models. However, when they used
multiple mixture component monophones models, Young &
Witt [12] reported a higher degree of accuracy for phoneme
quality acceptance/rejection.

3.1. Global recognition rates

The basic assumption behind the phonetic scoring algorithms
proposed in previous studies is that one should be able to
evaluate the quality of non-native speech by acoustic scores
computed by a speech recognizer trained on native speech.

As a first crude test of this assumption, we ran a small-scale
isolated words recognition experiment (a loop of the 90
different words of the word-sessions described in section 2.1,
with only one possible pronunciation provided for each word).
The recognition rates for the static sets of models as well as the

experts' ratings are reported for each speaker in figure 2.
Contrary to our expectations, the recognition rates observed
with dynamics sets of models are always lower (a loss of
accuracy exceeding 15%). We observe that the word
recognition rate is poorest for the two lowest ranking speakers,
and that the first-ranked speaker is the one that is best
recognized.
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Figure 2: Word recognition rates measured for six speakers as a
function of number of gaussians per state. The number in
parentheses reports the speaker rate given by an expert.

3.2. Measurements

Further to previous work, we compared two types of phonetic
scores, log-likelihood scores and log-posterior probability
scores, which are both computed in an HMM paradigm.

Log-Likelihood scores

For each phone segment i (of d frames: [1,7,_[), the log-
likelihood score is defined as / where p(y|q ) is the probability
that the observation vector at time 7 (y) is generated via the
phonetic model ¢;:

where b; * stands for the density probability function (typically
a mixture of gaussians) associated to the j7 state of the model g,
(which totalizes n, states). V stands for an operator (maximum

to+d-1 n;

l=— Ylog(p(y,/q)) and p(y,/a) =V b}y,

1=ty =1

or average). The symbol x represents the number of coefficients
used to compute b;* for the observation y. Practically, we
tested two values of] x: 13 (only first mfcc coefficents) and 39
(first coefficients plus A and AA ones).

Computing a frame by frame log-probability as described here
provides output scores for each phoneme, and this correlates
more or less to the log-probability score directly computed
during the forward viterbi path. The correlation coefficients
range from 0.5 to 0.9 depending on the speakers tested and the
set of models used. One possible explanation is that in the
frame-by-frame (FBF) computation mode, the order in which
different states are considered is not necessarily the order in
which they occur in time. Therefore we also endeavoured to
compute log-likelihood scores by running a viterbi alignment
on each segment. The likelihood probabilty at time # is obtained



inverting the viterbi path. In this paper, we will refer to this
mode of computation as VIT as opposed to the FBF algorithm.
We also investigated whether or not it was best to include the
transition probability in the score calculated by the viterbi path,
and found that, for this task at least, it didn't make a significant
difference.

Log-posterior probability scores

Based on previous studies, it seems that HMM-based log-
likelihood scores are poor predictors of the phonetic quality (at
least at the sentence level). This can be explained by the fact
that non-discriminating criteria are still widely used during the
training process of an HMM paradigm. The log-posterior
probability score of a phone segment i is computed as the
average (over time) of the frame based posterior probability of
the phone q; at time ¢. N stands for the number of phonetic
models (namely 53 here) and P(g;) is the prior probability of
1 to+d—1
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the phone class g; :

We computed this score assuming all phones equally likely.

3.3. Evaluation

Due to time constraints, the expert transcription is not time
aligned. Thus, in order to evaluate the efficiency of each score,
we aligned the expected phonetic string (which is time aligned)
with the expert transcription. A student can make different
mistakes with which a system has to cope: insertions, deletions
and substitutions. We defined a dynamic programming scheme
suitable for the present task (allowing for instance 2-1 mappings
which are common in non-native utterances). We limited this
study to the most common and easiest errors to handle, namely
substitutions (1-1 mappings). Among these errors, we focussed
on vowel substitutions despite believing, given our corpus, that
spotting consonant errors could be an easier task. As a matter
of fact, the spelling of some Swedish words often causes
beginners to make significant consonantic errors. For instance
the letter k is pronounced [k] when it is followed in the same
syllable by e, i, y, & or 0, but is pronounced [¢] either. In
previous studies the reliability of a scoring algorithm was
measured by computing the correlation between its scores and
the experts' ratings. As discussed in section 2.4, it appears that a
given phonetic deviation can be rated differently depending on
the context in which it occurs. This should affect the correlation
results slightly. An artefact which can influence the
interpretation of the results was also discussed in [6]. In this
study therefore we evaluate each score on its ability to locate
deviant phonemes. The efficiency of each score is measured
according to the precision (P = bad / (bad+GOOD-good)) and
recall (R = bad / BAD) rates. For the sake of convenience, we
will use the F-rate (F = 2x (P-R)/(P+R)) where BAD and
GOOD (resp. bad and good) stand for the number of phonemes
that have been respectively rejected and accepted by an expert
(resp. by the system). Note that the score accuracy (SA: rate of
phonemes well identified) and the false acceptance rate (FA:
rate of deviant phonemes that have been accepted) as used in

[12] is less informative for corpora containing fewer deviant
phonemes (then SA is basically higher than P).

3.4. Results of Individual Ratings

We tested 372 scoring machines which combined different
factors such as the number of coefficients of the input speech
vector (13 or 39), the kind of set of models (static or dynamic,
from 1 to 13 gaussians), the score used (log-likelihood or
posterior scores), etc. Using a native corpus, each scoring
machine was automatically assigned a set of threshold values
for each vowel encountered. The distribution of F-rates
observed for those scoring machines is reported in figure 3.
Basically, two types can be distinguished: those with
performances around 0.15 and those rating around 0.4. The best
machines obtain a performance above 0.5 which means, roughly
speaking, that fifty percent of the vowels identified as deviant
were really deviant, and that around half of the deviant vowels
were identified. This is obviously not good enough for a
realistic application despite the fact that this approach
outperforms a random scorer. Several reasons can account for
that. First, as already discussed, most errors are due to slight
deviations, mainly mismatches between the phonetic quality of
an accented vowel and its non accented counterpart (e.g. [01]/[5]
substitution). In a previous study [6], we ran an experiment on
an artificial database. Modifications such as [i]/[a] substitutions
were made to the phonetic reference of 30% of the non-deviant
vowels. Under such conditions, the scoring algorithms behaved
as expected and vowels could indeed be labelled as deviant or
not. We obtained an F-rate of more than 0.94 on word-sessions
with posterior scores computed with a set of 2-gaussian static
models. Another reason that can explain the limit of these
scoring machines is the difference in quality between the native
speech database and the non-native one. As part of our future
work, we plan to investigate the impact of noise reduction
techniques on the results.

Figure 3: Distribution of the number of scoring machines
investigated as a function of F-rate.

We will now discuss how the different factors influenced the
performances observed. Figure 4 shows as a function of the F-
rate, the ratio of systems that make use of a) the viterbi
algorithm (VIT), b) the static set of models (STATIC), c) the 39
coefficients (COEF39) and d) log-likelihood scores (PROB).
We observe (figure 4a) that the worst systems (20% of the total
ones) represent around half of the systems which used log-
likelihood score and a third of the systems using static



monophones. This corroborates what has been observed in other
studies: posterior scores are better predictors of phoneme
quality than log-likelihood scores. With less influence, static
models are worse predictors than dynamic ones mainly because
of the mismatch in quality between the training and the testing
data. Looking at a few of the better systems (figure 4b), we
observe that they use neither log-likelihood scores nor static
models. They all use the viterbi computation on input vectors of
39 coefficients. Despite the fact that the differences in
performance are small, the scoring machine that outperformed
the others uses 3-gaussian dynamic models, computing
posterior scores on 39 coefficients. The performances observed
on the sentence-sessions (1225 vowels, 269 deviant ones) range
from 0.17 to 0.47. The best results for the word-sessions were
obtained by systems using posterior scores in their calculations,
and the worst results by those using log-likelihood scores. The
best and worst performances for both sessions are reported in
table 1
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Figure 4: Distribution of several ratios characterizing the
scoring machines investigates as a function of F-rate.

Word-session (806/238) [Sentence-session (1125/269)

SA | FA P R SA | FA P R

B| 067 | 028 | 0.54 | 0.60 | 047 [ 0.35 | 0.36 | 0.86

W|[ 054 (041 | 020 ] 0.10 [ 049 | 035 | 0.19 | 0.34

Table 1: Score accuracy (SA), false acceptance (FA), precision
(P) and recall (R) rates obtained by the best scoring machine
(B) and the worse one (W) for both word-sessions (806 vowels,
238 deviant) and sentence-session (1125 vowels, 269 deviant).

4. CONCLUSION

In this paper, we described a new database of Swedish as
spoken by non-native students. This data is particularly well-
suited for studies in speech technology as applied to language
learning. We investigated and compared different ways of
rating the acoustic quality of a phoneme. We must note that the
lack of target human rates at the segmental level makes the
interpretation of the results somehow tricky.
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