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ABSTRACT : This paper presents a solution to the adverse
environment, open microphone problem, by using the
information stored in HMM output probability distributions to
obtain a confidence measure of the results. This information
can also be used to perform a secondary classification and
improve recognition results. The system was tested on data
[from the Ti4¢ database that had been corrupted by noise from
the NCISEX-92 database, as well as on real-world data, and
shows promising results.

1 Introduction

The performance of modern small vocabulary ASR systems is
exceptional, particularly when testing conditions approximate
training conditions. However there are still real-life problems
that are yet to be resolved in a practical way. Among these
problems are adaptation to unmatched acoustical conditions (the
classic environmental noise problem), and the detection of out
of vocabulary (OOV) words. [1]

In many situations, particularly where there is an open
microphone, the ASR system must deal with input that isn't part
of the vocabulary (OOV input). A common solution is to use
some method to determine a confidence measure, thus providing
a measure of accuracy of the recognised utterance. [2]

The advantages of confidence measures are twofold: they can be
used to verify the speech recogniser’s output for valid input
(verification), and they are useful in filtering out OOV input
(validation). Most of the existing techniques for hypotheses
testing have three major drawbacks [3]:

e They are based on the use of garbage models and
alternative recognition networks that are difficult to design
and train

e Although techniques have shown to provide improvements

in overall system performance, their computational cost is
high

e Only acoustic data is used in the verification process, even
though for a wide range of systems, valuable information
from application-dependent knowledge is available and
should be utilized.

This paper presents a novel solution that addresses the first two
problems by using application dependant information. Using the
information stored in output probability distributions (OPDs), it
is possible to obtain a confidence measure. This doesn require
any extra garbage modeling, and has a very low computational
cost.

2 Output Probability Distributions

The term Output Probability Distribution refers to the
distribution of log probabilities from a set of Hidden Markov
Models (HMMs). A given utterance is passed to each HMM in

#s.sridharan@ qut.edu.au

—> _P(i)z

) Feature ® 1 ]
extraction
| 1
utterance
| |

14 (i )M

> =)

Figure 1: Obtaining an OPD

the set and the log probabilities from each model are
concatenated to form a feature set, that is:

oPD(i)= [p(i), p(D), p()yweerr P ]

where p(i)j indicates the log probability of utterance i from

model j,j=1.M (M is the number of words in the system).
Figure 1 illustrates this procedure.

Given a constant environment, each token is recognised in a
consistent fashion. For example, in a simple digit-based ASR
system, if the input word is eleven’, the word seven’ might be a
good competitor (that is, its’model will give a score comparable
to the score of the model for ‘eleven’), and hence will
consistently have high scores in the OPD. Likewise, the digit
six’ might consistently have a low score. This trend will be
reflected in the OPD for the word ‘eleven’. As a result, given a
adequately constant environment, we can expect that the OPD is
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Figure 2: OPD for word IPSWICH’



constant. Figure 2 shows the normalised OPDs (scaled so that
results have a maximum value of 1) for the word TPSWICH’
over 400 utterance examples and 24 models. As expected, the
OPD is approximately constant.

As the acoustic noise levels increase, the distributions change.
Often strong competitors now become strong enough to
override the correct model and the normalised OPD curve
becomes flatter, as all of the models start to perform equally
badly. Figure 3 shows the OPD for the word 0’ over different
SNRs, using 400 utterance examples and 10 models. As the
SNR decreases, the OPD becomes flatter, and some of the
HMM models start to override the correct model. As the noise
level increases, the output probabilities seem to cluster around
the -1 value.

These distributions suggest that if a secondary classifier were to
be trained on the OPDs it might be possible to obtain a
confidence measure for a given background noise level. This
information is directly related to the probability of the system
output being correct.

3 OPD Models

A set of HMMs is trained for each token and the OPD feature
vectors are produced using the training. These are used to train
OPD models.

OPD models represent the OPDs for different tokens in a given
environment and are used to perform the secondary
classification of the OPD scores. This is further discussed in
Section 3.2.

3.1 OPD Parameterisation

To adequately represent the OPDs, it is necessary to obtain a
good feature set. It is obvious that the use of the OPD itself
would provide a good representation. However, we found that
other features could improve the performance significantly.
These features are obtained from an OPD template, which is
discussed below.
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Figure 3: OPD Distributions for varying SNRs

OPD templates are produced for each HMM model. The
template T, is obtained by the following:

1 N
T =—>» OPD(i
; NE (0

where T, indicates the template model for word m, N is the

number of training utterances for a word that is associated with

model m and OPD(i)is the output probability distribution for
utterance i.

The feature vector X is now obtained for each test utterance.

To obtain X we first define the function D,(x):
A (x ): SOV 4y priing (OP D (’))

D,(x)= A (r+1)-4(x)

D, (x)represents the difference between successive peaks in the
OPD. We also define the term D,(x), which is obtained
similarly to D, (x)except that T, is used instead of OPD(i).

Our results indicated that the value of D,(x)was approximately

constant for each digit. As such, this vector has use as part of
the feature vector set described below.

Feature vectors were selected by the following criteria:
1. They must be able to represent the OPD accurately.
2.  They must be invariant to different noise levels.

Based on these criteria, the following terms were used in the
feature vector:

Feature Representation

the difference in means between 7 and
|ﬂf - ﬂi |

OPD(i). This represents the deviation
between the two vectors.

The ratio of o, , the standard deviation

of T, , and o,, the standard deviation

of OPD(). This

difference in spread between the two
vectors.

)

represents the

|

The difference between the highest and
second highest peaks in OPD(i) . This

is an indicator of how significant the
‘winning’ result is.

D,(0)

The difference between Af/, , the mean
of D[(x), and A,u,., the mean of
D, (x)
deviation between the two vectors

D, (x)and D, (x)

Au, — A,

This term represents the

The
Ao deviation of T, , and Ac,, the standard

ratio of Aoc,, the standard

deviation of OPD(i). This represents
Ao ) P

i the difference in spread between the
two vectors D, (x)and D, (x)

OPD() The values of the OPD

3.2 OPD Model Training

We chose to use trauissian Mixture Medels (GMMSs) to model
the OPD feature vectors. GMMs have the advantage of being
able to represent any given distribution very accurately as they



consist of several mixtures, each of which has a Gaussian
distribution (hence the name Gaussian Mixture Model).

For each word in the vocabulary, one secondary classifier must
be trained using the OPD feature set. We define the feature
vector as

D,0), |1, 1, % |Aw, - Au,

Ao
—L,0PD{i
Ao @

X()=

for i =1..N where N is the number of training utterances
available for each word in the vocabulary of the recogniser.
The models are trained using standard GMM training
procedures. [10]

To optimise the performance of the system, it is beneficial to
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Figure 4: Different methods of obtaining a confidence score

train the system with both clean speech and noisy speech with
varying degrees of SNR.

4 Application of OPD models

Since the performance of OPD models depends on the
distribution, it is obvious that as the number of words in the
vocabulary increases, it becomes harder to differentiate between
different OPDs. As such, OPD models are best used for
applications where the number of words in the vocabulary is
small, for example, in voice dialling applications or industrial
applications where voice control of a machine is implemented
with a small vocabulary and the environment is very noisy.

OPD models can be used to provide a confidence measure for a
ASR system. This confidence measure can be used to give a
degree of accuracy of the system, and also is very useful in
filtering out OOV input.
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Figure 5: % Accuracy of System at varying SNRs

The confidence measures are based on scores obtained from the
GMMs when test speech is applied to the recognition system.
The score for a given test speech utterance is obtained from the

i” GMM using the log likelihood.
s(i)zlogP()Z|GMM,.) i=1.M

where M equals the number of GMM models.

We used two methods to obtain the confidence measures based
on these scores. Method 1 used the output score from the

GMM in )_fs corresponding to the winning model from the

primary classifier. Method 2 uses the scores from all of the OPD
GMMs, and calculates the confidence score as the quotient of
the highest GMM score and the second highest GMM score.
(Figure 4)

In both cases, the confidence score is compared against a
threshold, and a binary accept / reject decision is made.

S5 Results
5.1 Database Testing

We used the TI46 database for clean speech, and corrupted it
with varying degrees of noise from the NOISEX-92 database
(factory room noise and car noise) for noisy speech. The
primary HMM classifier was trained from the training set of the
TI46 database, using 5 states and 8 mixtures per model. GMMs
for the secondary classifier were trained from both the clean and
noisy speech, and used 3 mixtures per model.

Figure 5 shows results obtained from applying both methods 1
and 2 to speech data that had been corrupted by varying degrees

False Acceptance Rate %

False Rejection Rate %

SNR % Accuracy % Rejection
Clean 99.24 0.38
12dB 92.44 30.73
6dB 92.32 53.78
0dB 93.32 84.26

Figure 6: Performance of Method 2 confidence measures over
varying SNRs



of noise. Method 2 yields the best results, achieving an accuracy
of 93.3% at 0dB, which means that the system correctly
classified input speech and rejected incorrectly classified speech
93.3% of the time. The rejection rate was 84.2%, indicating
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Figure 7: Performance of Method 2 confidence measures with
20% OOV data

how much input data is rejected by the confidence system,
including both false and true rejections.

The receiver operating characteristics (ROC) curve in Figure 6
clearly indicates that this system also has a very low false
acceptance and false rejection rate, leading to its good
performance. Method 2 was used to produce this figure.

We added 20% more OOV data info the existing database and
ran the tests again. The results appear in Figures 7. Note that
testing was not done for different SNRs, so there is only curve.
The system achieved an accuracy of 86.5% with a rejection rate
of 45.5%.

5.2 Real-world testing
The same system was tested in a factory environment. We
developed an application to sort parcels using speech

recognition. The system used a vocabulary of 24 destinations,
and operated in SNRs ranging from 15dB to 2.3dB. Because
the noise in the factory varied randomly, it isnt possible to
quote results at different levels of SNR. The results were very
good, with performance increasing from 82.4% to 97.4% using
OPD confidence measures. The rejection rate was 13.5%.

6 Conclusion

The use of OPDs has been shown to have advantage in limited
vocabulary applications. It also shows a good resistance to
noise, particularly when the OPD models are trained with both
clean and noisy speech. The use of OPD based classifiers help
to reduce performance errors due to OOV input.

Further research needs to be done to in the following areas:

¢ Determine the performance in larger vocabulary systems -
the largest vocabulary tested was 24.

¢ Determine an optimum OPD feature set.
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