RESCORING MULTIPLE PRONUNCIATIONS GENERATED FROM
SPELLED WORDS

Roland Kuhn, Jean-Claude Junqua, and Philip D. Martzen

Panasonic Technologies Inc., Speech Technology Laboratory
3888 State Street, Suite 202, Santa Barbara, CA 93105, U.S.A.
email: kuhn, jcj@research.panasonic.com; philip.martzen@aero.org

1. ABSTRACT

Building on earlier work [2], we show how a set of binary de-
cision trees grown by means of the Gelfand-Ravishankar-Delp
algorithm [8] can be trained to generate an ordered list of possi-
ble pronunciations from a spelled word. Training is carried out
on a database consisting of spelled words paired with their pro-
nunciations (in a particular language). We show how phonotac-
tic information can be learned by a second set of decision trees,
which reorder the multiple pronunciations generated by the first
set. The paper defines the “inclusion” metric for scoring pho-
neticizers that generate multiple pronunciations. Experimental
results employing this metric indicate that phonotactic reorder-
ing yields a slight improvement when only the top pronuncia-
tion is retained, and a large improvement when more than one
hypothesis is retained. Isolated-word recognition results which
show good performance for automatically-generated pronuncia-
tions are given.

2. INTRODUCTION AND RELATED
WORK

Many applications of speech recognition and speech synthesis
would benefit from the ability to generate pronunciations of words
from their spelling [10]. The direct predecessor of the current
paper is [2], which described a two-step approach to training a
letter-to-sound system. In the first step, letters and phonemes
are aligned via a Viterbi algorithm that inserts letter or phoneme
nulls [3]. In the second step, either a binary decision tree or a
Trie lookup data structure learns letter-to-phoneme rules from
the aligned strings.

The current paper shows how phonotactic information can
be brought into play. In the new approach, we grow not only the
original “letter-only” decision trees, but also “letter-phoneme” or
“mixed” trees which evaluate the probability that a given phoneme
is generated from a particular letter based on both the letter se-
quence and the rest of the phoneme sequence. To generate an
ordered list of pronunciations for a spelled word, one first gen-
erates the N most likely pronunciations from the “letter-only”
trees, and then rescores and reorders these N pronunciations with
the “mixed” trees. In the experiments we carried out, the top can-
didate after rescoring was always more likely to be correct than
the top candidate before rescoring.

The recent work that has the most similarity to ours is [9].
Like us, these researchers employ letter-only decision trees, with
questions about categories of letters (e.g. fricatives) as well as
about singleton letters, to generate pronunciations. Unlike us,

they weight candidate questions according to their distance from
the current phoneme in order to favour questions that pertain
to the nearby context; they also smooth the probabilities in tree
leaves with probabilities in ancestral nodes, and combine prob-
ability estimates generated by trees grown on different subsets
of the data. Like us, they rescore pronunciations generated by
letter-only trees with phonotactic information: however, they use
phonemic trigram rescoring.

Two other recent papers on the letter-to-sound problem are
[1], [5]; both use neural nets, though the authors of [5] are cur-
rently experimenting with a mixed approach, in which decision
trees play a part. A particularly interesting and unusual approach
to the letter-to-sound problem is described in [11].

3. METHODOLOGY

Figure 1 shows a decision tree for the pronunciation of the let-
ter ‘e’, with questions based only on the letters in the word in
which the ‘e’ occurs. The numbers in the questions refer to po-
sitions relative to the ‘e’, with negative numbers denoting letters
to the left and positive numbers denoting letters to the right. “#’
is a special symbol meaning “beginning or end of word”. For
instance, the question in the root “+1L==r?" means “is the po-
sition after the ‘e’ occupied by ‘r’?”; the question “-2L==#7"
means “is the beginning of the word two positions to the left of
the ‘e’?” The rectangular boxes are the leaves of the tree; they
contain probabilities that the ‘e’ will generate certain phonemes.
The symbol for the null phoneme is -’. The tree shown here was
extracted for illustrative purposes from the upper portions of a
much larger tree for ‘e’.

Once 26 trees (one per letter of the alphabet) of this “letter-
only” type have been grown, one submits each letter of a new
word to the appropriate tree. From the information in the leaves
reached, one can construct the N most probable phoneme se-
quences for the word via dynamic programming. However, ex-
amination of the output of this N-best letter-only phoneticizer
turned up many phonotactically unlikely pronunciations. For in-
stance, “Achilles” generated ae k ¢h I I z (reference pronunci-
ation is ax k ih I iy z), and “Aaberg” generated aa ax b er g
(reference is aa b er g).

We therefore determined to grow a second type of decision
tree (shown in Figure 2) which estimates the probability of a
phoneme being generated by a given letter, based on both the
other letters in the word and the other phonemes in the pronun-
ciation. Figure 2 again deals with the letter ‘e’. Questions with
an ‘L’ in them refer to the letter sequence of the word, questions
with a ‘P’ to the phoneme sequence. The root question in Figure

yes no yes no
= =>1.0}leh=>0.74 1=>1.0|1- =>0.82
- =>0.26 . eh=>0.08
¢ eh=>0.63|| = =>0.27] | = =>0.83||iy=>0.51 0.05 t=>0.91 ||Jiy=>0.531 | 1=>0.99 ||- =>0.92
. ax=>0,
ih=>0.18] eh=>0.25||1=>0.09|| = =>0.30] eh=>0.08]h=>0.17] | (etc.) ||iy=>0.05
- ~ ._ - ih=>0.01
iy=>0.11]| ax=>0.24| |iy=>0.05||eh=>0.08 (etc.) ih=>0.01]]- =>0.07 y=>0.01
yes no |ax=>003|| ih=>0.13 | | e=>0.01 ||ib=>0.05 ' y=>0.07 (etc.)
ey=>0.02|| t=>0.03 (etc.) ||ley=>0.03 @ ih=>0.06
= =>060||. _so08l| (et (etc.) (etc.) yes 70 (etc.)
eh=>0.28 [=>0.01
ih=>0.09 —
gy | RC eh=>0651},—>0.32)
iy=>0. .
Y 1h=>0.17 lleh=>0.27
(erc.) iy=>0.11]]. =>0.19
ax=>003ip_50.17
ey=>0.02]].
Figure 1: Letter-only tree for ‘e’ (etc.) iy=>0.03
ey=>0.01
(etc.)

2 means: “is the next phoneme after the phoneme generated by
‘e’ a consonant?” The question in the root’s yes child means: “is
the preceding phoneme syllabic?”; the question in the root’s #o
child means: “is the next phoneme the phonetic null?”

4. INITIAL EXPERIMENTS

‘We had originally planned to carry out experiments on both Span-
ish and English data. For Spanish, we carried out an initial ex-

periment in which letter-only trees grown on 40957 spelling- EXP# | DATABASE | TRAINING | TEST
pronunciation pairs were tested on 4551 spellings not in the train- 1 Nettalk 17,940 2,000
ing data. These Spanish data came from the LDC Spanish Lexi- 3 CMU-STL 10989 | 98,898
con [7]. The letter-only phoneticizer achieved string accuracy of 3 CMU-STL 98.898 | 10,989

99.6% - that is, only 19 of the 4551 words were wrongly phoneti-
cized. 15 of these 19 errors involved words and names of English
or American origin (e.g., “Andrew”, “Chrysler”, “standard”). In
view of the high success rate of the letter-only approach for Span-
ish, we decided not to carry out experiments with mixed trees for
that language.

For the other experiments in this section, we generated N =
20 pronunciations from each spelled word using the letter-only
trees, then rescored with mixed trees grown on exactly the same
training data as the letter-only trees.

4.1. Databases

Table 1 gives the number of pronunciations (phonetic transcrip-
tions) on which training and testing took place. The aligned
Nettalk data we used for EXP1 were kindly provided to us by F.
Yvon; this version of Nettalk is the same as that used in his thesis
[11]. CMU-STL is our in-house version of the CMU pronounc-
ing dictionary, obtained by transforming Version 0.4 of CMU [4]

Figure 2: Mixed tree for ‘e’

into STL’s set of 42 phonemes and then editing out some errors.
We aligned CMU-STL with Viterbi [3] and then carried out two
sets of experiments, varying the relative sizes of training and test
corpora.

Table 1: Sources of training and test data

4.2. Tree Variants

In addition to questions about individual letters and phonemes
in the context of the current letter and phoneme, we can define
classes of letters and classes of phonemes about which questions
can be asked. All trees used the same four letter classes: VOW
(‘a’, ‘e’, ‘1’, ‘0’, ‘u’), VOY (VOW plus ‘y’), CONS (consonants
without ‘y’) and CONY (consonants plus ‘y’). The pseudo-letter
‘#’, denoting beginning or end of word, does not belong to a
class.

For mixed trees, we tried two schemes for defining phoneme
classes: a simple scheme with only classes VOW and CONS de-
fined, and a more complex scheme with 21 phoneme classes.
Another aspect of growing mixed trees is independent of the

class definitions: should phonetic nulls in the neighbourhood
of the current phoneme be kept or eliminated (pulling non-null
phonemes closer)? We have tried both possibilities.

We thus experimented with four different variants of mixed-
tree-growing: variant A (phonetic nulls kept, simple question
scheme); variant B (nulls kept, complex question scheme); vari-
ant C (nulls discarded, simple question scheme); and variant D
(nulls discarded, complex question scheme). Figure 2 was ob-
tained under variant B.

In all experiments shown here, the letter and phoneme ques-
tions spanned positions between 5 to the left and 5 to the right of
the current position.

4.3. Performance Results

All results shown below were obtained by comparing the pho-
neticizer’s top candidate to all pronunciations for that word in
the test corpus. This is a harsh criterion, since M pronunciations
in the test corpus for a given word cause the phoneticizer’s output
to be scored wrong at least M — 1 times. The “% WD. CORR.”
column shows the percentage of phoneticizer-generated pronun-
ciations that are completely correct by this measure; the other
columns show the number of phoneme substitutions, insertions,
and deletions in the top candidate as a percentage of the number
of phonemes in the reference. For Nettalk, six runs were carried
out per variant; for all CMU-STL results (EXP2 and EXP3), two
runs were carried out per variant. Recall from Table 1 that the
EXP3 phoneticizer was trained on nine times as much data as the
one in EXP2; as expected, EXP3 performance is better.

VARIANT | % WD | % PH. | % PH. | % PH.
CORR. | SUBS INS DEL
letter-only | 54.2 8.81 0.92 0.78
A 57.6 8.81 0.89 1.06
B 57.5 8.98 0.86 1.03
C 57.6 8.97 0.93 1.07
D 57.9 8.67 0.79 1.06

Table 2: Nettalk results (EXP1)

VARIANT | % WD. | % PH. | % PH. | % PH.
CORR. | SUBS INS DEL
letter-only | 46.6 10.47 1.10 1.76
A 48.1 10.91 1.08 1.79
B 48.0 10.91 1.15 1.70
C 47.5 11.02 1.11 1.83
D 474 11.06 1.10 1.82

Table 3: CMU-STL results (EXP2)

In the mixed trees, about 33% of the questions tended to be
of ‘P’ (phoneme) type, and 67% of ‘L’ (letter) type. The per-
centage of times in which the top hypothesis generated by the
letter-only trees was still the top hypothesis after rescoring lay
in the range 58% — 68%, with the lowest value (most active
rescorer) obtained by variant B of EXP2 and the highest value
(most conservative rescorer) obtained by variant A of EXP3; the
EXP1 (Nettalk) values clustered around 61%.

VARIANT | % WD | % PH. | % PH. | % PH.
CORR. | SUBS INS DEL
letter-only | 59.0 7.67 0.76 0.99
A 59.9 8.01 0.72 1.38
B 59.7 8.11 0.72 1.36
C 61.3 7.80 0.76 1.14
D 59.9 8.12 0.80 1.26

Table 4: CMU-STL results (EXP3)

5. LATER EXPERIMENTS

The above results showed that rescoring pronunciations obtained
from letter-only trees with mixed trees slightly improves the fre-
quency with which the phoneticizer’s top hypothesis matches the
reference. In practice, one would often wish to retain more than
one hypothesis from the phoneticizer; we therefore require a di-
agnostic for multiple pronunciations.

We decided to take the top N hypotheses for a word and
compare each of them to the reference pronunciation. If a dis-
tance measure between pronunciations is defined, dynamic pro-
gramming can be used to find the hypothesis that is closest to the
reference pronunciation. In our experiments, the distance mea-
sure was the sum of substitutions, insertions, and deletions re-
quired to turn a hypothesis into the reference. The usual compar-
isons are then carried out between the reference and the chosen
hypothesis. We call this the “inclusion” metric. For instance, if
N = 3 and the reference pronunciation matches one of the three
hypotheses perfectly, no errors are recorded for the word. Thus,
comparisons across different values of N are meaningless (the
higher N is, the more forgiving the metric) but methods can be
compared for fixed N.

Table 5 shows inclusion results for different values of NV, for
the letter-only version of the phoneticizer (/.-only) and for two
versions in which mixed trees of type C above rescore hypotheses
from the letter-only phoneticizer. In the mix20 version, the first
20 hypotheses from the letter-only phoneticizer are rescored; in
mix100, 100 hypotheses are rescored. Experimental conditions
are as in EXP3 above (98, 898 pronunciations from CMU-STL
as training, 10,989 as test). Note that for any value of N, the
mix20 version yields better pronunciations than the other two
versions according to the inclusion metric. Clearly, guessing cor-
rect pronunciations for an English word is a delicate balance: one
should neither place too much emphasis on the sounds of individ-
uval letters (as the /.-only version does) nor on phonotactic infor-
mation (as the mix] 00 version does). The mix20 version achieves
this balance better than the other two do.

Finally, we carried out isolated-word recognition experiments
on three sets of 225 words from the Phonebook lexicon, with
transcriptions produced by the same CMU-STL-trained phoneti-
cizer as in EXP3 and Table 5. Table 6 shows the results, aver-
aged over the three word sets. The line “N=1: manual” gives
results for transcriptions produced by a linguist (one per word);
since these are the reference pronunciations, the inclusion metric
(“Incl. %) on this line is 100.0% by definition. The last column
shows the recognition word percent correct (“Rec. %”). Note
that if we take the top three pronunciations output by the mix20
phoneticizer, the recognition result is almost as good as that for
the manually-generated pronunciations (95.0% vs. 97.1%). How-
ever, with a larger lexicon three pronunciations per word might
be dangerous (there would be more potentially confusable words).

VARIANT % WD | % PH. | % PH. | % PH.
CORR. | SUBS INS DEL
N=1: L-only | 59.0 7.67 0.76 0.99
N=1: mix20 61.3 7.80 0.76 1.14
N=1: mix100 | 58.7 8.49 0.93 1.51
N=2: l.-only | 70.8 5.13 0.56 0.79
N=2: mix20 75.1 4.67 0.43 0.59
N=2: mix100 | 67.6 6.58 0.51 0.72
N=3: l-only | 75.7 4.02 0.45 0.69
N=3: mix20 80.7 344 0.36 0.47
N=3: mix100 | 79.4 3.71 0.32 0.50
N=4: l.-only | 79.3 3.34 0.39 0.58
N=4: mix20 83.5 2.82 0.33 0.41
N=4: mix100 | 82.9 293 0.28 0.43
N=5: l.-only | 81.4 2.96 0.34 0.53
N=5: mix20 85.4 243 0.31 0.37
N=5: mix100 | 85.1 248 0.26 0.40

Table 5: CMU-STL: Inclusion results

VARIANT Incl. % | Rec. %
=1: manual | 100.0 97.1
N=1: L.-only 51.9 90.2
N=1: mix20 52.7 90.7
N=1: mix100 | 50.2 89.9
N=2: [.-only 61.6 93.2
N=2: mix20 63.7 934
N=2: mix100 | 63.0 93.3
N=3: l.-only | 65.5 94.0
N=3: mix20 68.4 95.0
N=3: mix100 | 68.1 94.0
N=4: [.-only 68.1 93.1
N=4: mix20 70.7 93.2
N=4: mix100 | 71.1 93.2
N=5: L-only | 69.5 89.7
N=5: mix20 71.6 89.4
N=5: mix100 | 72.4 89.2

Table 6: Phonebook: inclusion and recognition results

6. DISCUSSION

We have shown that phonotactic rescoring by mixed trees of
the ordered list of pronunciations generated by letter-only trees
yields a better list, especially when more than one pronunciation
is kept. We also defined a metric for systems that generate multi-
ple pronunciations. Because it relies on the notion of a reference
pronunciation, this metric may still underestimate the practical
usefulness of the phoneticizer - practically, we may be just as in-
terested in generating probable “wrong” pronunciations as right
ones.

Does rescoring make the phoneticizer more likely to mispro-
nounce words in the way a native speaker would? This ques-
tion cannot be answered quantitatively at present; in our opin-
ion, however, the answer is “yes”. We have studied rescoring er-
rors, where the rescorer rejected the correct candidate provided
by the letter-only trees; these errors are often similar to those

a poorly educated speaker of standard American would make.
From EXP3, variant C, we have the following examples (refer-
ence in brackets): “airfare” => eh r f er (eh r f eh r), “ana-
lyzes” => ae nax l iy z ith z (ae n az [ay z th z), “chiseled”
=>chayzaxld(chihzaxld).

The Microsoft research described in [9] has some similarities
to ours, though the phoneme set for the CMU-derived dictionary
on which experiments were carried out, the amount of training
data, and the nature of the baseline system all differ. Further-
more, the Microsoft group did not report results for generation
of multiple hypotheses. Thus, we have not been able to compare
directly phonemic trigram rescoring with mixed-tree rescoring.
Our intuition (it is no more than that) is that mixed-tree rescor-
ing is probably superior, because it permits class-based questions
covering a wider context. However, the other Microsoft inno-
vations - such as distance-weighted question-choosing criteria,
smoothing of leaf probabilities, and combination of probabilities
from multiple trees - probably yield a system with overall perfor-
mance better than ours. In future work, we hope to experiment
with these ideas, and with other Furopean languages, particularly
German and French.

7. REFERENCES

1. M. Adamson and R. Damper, “A Recurrent Network that
Learns to Pronounce English Text”, ICSLP *96, V. 3, pp.
1704-1707, Oct. 1996

2. O. Andersen, R. Kuhn, er al., “Comparison of Two Tree-
Structured Approaches for Grapheme-to-Phoneme Con-
version”, ICSLP 96, V. 3, pp. 1700-1703, Oct. 1996

3. O. Andersen and P. Dalsgaard, “Multi-lingual testing of
a self-learning approach to phonemic transcription of or-
thography”, Furospeech 95, pp. 1117-1120, Sept. 1995.

4. CMU Pronouncing Dictionary, Carnegie-Mellon Univer-
sity, http://www.speech.cs.cmu.edu/cgi-bin/cmudict

5. N. Deshmukh, J. Ngan, J. Hamaker, and J. Picone, “An
Advanced System to Generate Pronunciations of Proper
Nouns”, ICASSP-97, V.11, pp. 1467-1470, April 1997

6. T. Fukada and Y. Sagisaka, “Automatic Generation of a
Pronunciation Dictionary Based on a Pronunciation Net-
work”, Eurospeech *97, V. 5, pp. 2471-2474, Sept. 1997

7. S. Garrett, T. Morton, and C. McLemore, “LDC Span-
ish Lexicon”, Linguistic Data Consortium, Philadelphia,
Pennsylvania, 1997

8. S. Gelfand, C. Ravishankar, and E. Delp, “An Iterative
Growing and Pruning Algorithm for Classification Tree
Design”, IEEE Pattern Analysis and Machine Intelligence,
pp. 163-174, Feb. 1991

9. L. Jiang, H.-W. Hon, and X. Huang, “Improvements on a
Trainable Letter-to-Sound Converter”, Eurospeech 97, V.
2, pp. 605-608, Sept. 1997

10. L.Lamel and G. Adda, “On Designing Pronunciation Lex-
icons for Large Vocabulary, Continuous Speech Recogni-
tion”, ICSLP-96, V. 1, pp. 6-9, Oct. 1996

11. F. Yvon, “Prononcer par analogie: motivation, formali-
sation, et évaluation”, These de doctorat (ENST96), Ecole

Nationale Supérieure des Télécommunications, France, May
14th 1996

We wish to thank F. Yvon of ENST, France, for providing us with
his Nettalk data.

