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ABSTRACT

In this paper, to estimate the time-varying speech parameters
having non-Gaussian excitation source, we use the robust
sequential  estimator(RSE) based on t-distribution and
introduce the forgetting factor. By using the RSE based on t-
distribution with small degree of freedom, we can alleviate
efficiently the effects of outliers to obtain the better performance
of parameter estimation. Moreover, by the forgetting factor, the
proposed algorithm can estimate the accurate parameters under

the rapid variation of speech signal.

1. INTRODUCTION

The estimation and tracking of speech parameters have long
been recognized as important adjuncts to speech signal
processing and the several methods based on linear predictive
coding(LPC) have been developed as a useful method. However,
those frame-based analysis methods are known to have problems
for certain type of speech signals, including source-track
interaction when periodic pulse trains are the excitation, as in
voiced sounds and the fast transition between vowels and
consonants. To overcome the drawbacks of those methods, the
Kalman filter was proposed. However, in the presence of outliers,
the Kalman filter is known to show very poor performance since
it is optimal only for Gaussian noise. Also, when the speech
signal varies rapidly, the parameter-tracking performance of the
Kalman filter is diminished by the weight which the filter gives
to the history of the signal.

In this paper, to estimate the parameters of speech signal having
non-Gaussian excitation source. we use the robust sequential
estimator(RSE)[2] based on t-distribution. Also, to cope with the

rapid variation of speech signal, we introduce the forgetting

factor. We use a loss function which assigns large weighting
factor for small amplitude residuals and small weighting factor
for large amplitude residuals which is for instance caused by the
pitch excitations. The loss function is based on the assumption
that the residual signal has an independent and identical t-
distribution with O degrees of freedom. When OL goes to
infinite, we get the conventional LP method. Since the t-
distribution with small O has more probability on its tail than
that with large OL, we assume that OL=3. Therefore, by using
the RSE based on t-distribution with small degree of freedom,
we can alleviate efficiently the effects of outliers to obtain the
better performance of parameter estimation. Moreover, in order
to cope with the rapid variation of speech signal, we introduce
the forgetting factor to this RSE. By the forgetting factor, the
proposed algorithm can estimate the accurate parameters under
the rapid variation of speech signal to base on estimation on only

the most recent portion of the data.

Some experimental results performed on real speech signals,
Korean sentences lasting about one second, show that the
proposed algorithm achieves more accurate estimation and
provides improved tracking performance with smaller variance
and bias, compared to the robust Kalman filter[1] based on
Huber’s M-estimate for both Gaussian and heavy-tailed

processes.

2. THE PROPOSED ALGORITHM

The residual signal €, can be expressed as a function of the

linear prediction(LP) vector as
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where a=[a;a,K a, 1" and a, are LP coefficients. In Eq.



(2-1), s, is a time-varying autoregressive model of order p,
AR(p). The excitation source €; is considered a non-Gaussian
process which is a combination of two Gaussian processes with
different variances: one Gaussian process has a small variance
which accounts for the modeling error caused by fitting the vocal
tract structure with improper model parameters, and the other
with a relatively much larger variance represents the error due to

the spiky excitation.

In the conventional LP(CLP) speech analysis. the predictor

coefficients a ., 1< j<p, are determined to minimize the

sum of the squares of the prediction residuals. Since the result is
least square fit, the obtained estimate is very much affected by
the strong signal parts and results in difficulties for the LP
analysis of high-pitched voices. Also, In the CLP method, the
structure of the source excitation is not taken into account. As
mentioned above, when the excitation source is modeled by O -
contaminated normal mixture model, the least square method is

biased and inefficient.

Many robust procedures can be viewed as a moditied least
squares(LS). Robust estimators are more efficient (lower
variance) than LS when the errors are not normally distributed.,
and slightly less so when they are. The key step of robust
procedure is to replace the square by another symmetric cost
function of the residuals or to model the noise by a nonnormal,
heavy-tailed distribution to account for outliers. We can then use
maximum likelihood analysis to obtain robust estimates of the
parameter vector. Unfortunately, the direct evaluation of
maximum likelihood estimates from nonnormal distributions
becomes quite complicated. But an effective means of obtaining

maximum likelihood estimates for a wide class of nonnormal

distributions is weighted least squares.

Let f (81.) be any differentiable error density function which

can be written in the form
-1 e, 2
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where O is a scale parameter, g{} denotes a functional form,

and €, =8, — Za]vsl-fj is the i-th actual error. Given a
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sample § of k observations, the logarithmic likelihood function

for a, and 02 is given by

k €.
l(a,0l9=K - [logc™ + logg{(g’)z}] 2-3)
i=1
,where K is some constant.
From this, we can define the error criterion function as
d -1 €124
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,where /(-) = log g(+). For heavy-tailed Gaussian process,
h(-) is replaced by the Huber’s score function Py (1) defined

x% |x| <c
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In this paper, heavy tailed error distribution is reasonably

as

Pu(xX)= (2-3)

represented by a t-distribution defined by
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having small degree of freedom  and scaled by a parameter
O. Therefore, g(-) is given by

g, g2
gDy = {1+ e, 2-7)
c (a
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The degree of freedom is given by & =3 , since this induces to

the most accurate and the efficient estimation|3].

In addition to that, the forgetting factor A, 0 <A <1, is
employed to weight the most recent data more heavily to allow
for tracking of varying parameters. Progressively smaller A
result in parameter being computed with effectively smaller
windows of data that are beneficial in nonstationary situations.

Then, the Eq. (3-4) is rewritten as
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To obtain the M-estimator, by differentiating the Eq. (2-8) with

respect to @ and 0'2 and equating these two equations to zero,

we get the maximum likelihood estimates @ and O as the

solution of the nonlinear equations
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We can solve these nonlinear equations using iteratively

2 _ =2

h'=0C

where w, =w,(a,6°) = —2{

reweighted least squares(IRLS). Rewriting (2-9) in matrix form
yields

H'W(s—HA)=0.

where § is an 7 -vector of speech signals on the dependent
variable, H is an 1 x P matrix of observed speech signals

having rank p, Aisa p -vector of parameters to be estimated,

and W is a diagonal matrix defined such ln_iwi as
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Substituting Eq. (2-7) for g in (2-10) gives the individual
weights:
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,where the residual 7, =5, — z a.s,
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— We use LL in this

expression to distinguish the (unknown) true value of the scale

parameter, O, from an estimated value, W, used in computing

the weights.

The RSE starts from an initial robust estimate of the speech
parameters and these parameters are computed by IRLS with the
errors assumed to be t-distributed. It then adds the remaining
data sequentially, assigning weights to each new observation

based on the previous estimates.

Suppose that the robust parameter estimate for the first m
observations is
A,=(H.W,H,)
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is the appropriate diagonal weighting matrix

computed by the maximum likelihood analysis. After expanding
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,where Pm = (H mW H m) and rearranging the terms, we
obtain the following recursive equations for the robust sequential

algorithm:
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The crucial problem in robust estimators is the estimation of the
scale parameter. As an efficient, robust and simple approach to
simultaneous scale and parameter estimation for a wide class of

nonnormal distributions is obtained using maximum likelihood
m — 2
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3. SIMULATION RESULTS

The proposed algorithm has been tested on both synthetic speech
and natural Korean speech, ‘sa’. The results have been compared
to those by the conventional Kalman filter and the robust
Kalman filter proposed in [1]. The results are shown in Figure 1
and Figure 2. In Figure 1, @ trajetories for the synthetic speech,
obtained by each method. In Figure 2 (b), from the top, @
trajetories of the conventional Kalman, the robust Kalman and
the proposed algorithm are presented, respectively. They are
given a little bias to show their differences apparently. As shown
in these figures, the proposed algorithm can estimate the
trajectory of the parameter more accurately, while the others are
In this

much affected by outliers, the pitch excitations.

simulation.

4. CONCLUSIONS

We proposed the Robust Sequential Estimator based on t-
distribution with forgetting factor. The proposed algorithm can

alleviate efficiently the effects of outliers to obtain the better



parameter estimation by introducing t-distribution to sequential
estimation. Also, by introducing the forgetting factor, it can
estimate the rapid varying parameters which brings some
drawbacks to the Kalman filter. The simulation results show that,
by the proposed method, the better estimation performance can

obtained.

5. REFERENCES

1.T. Yang, J. Lee, K. Lee and K. Sung, “On Robust Kalman
Filtering with Forgetting Factor for Sequential Speech
Analysis”, Signal Processing. vol.63, no.2, pp.1151-1156,
1997.

2. K. Boyer, J. Mizra and G. Ganguly, “The Robust

Sequential Estimator: A General Approach and its
Application to Surface Organization in Range Data”, [EEE

Trans. Pattern Anal. Machine Intell., vol.1.16, no.10, 1994.

3. J. Sanubari, K. Tokuda and M. Onoda, “Speech Analysis
Based on AR Model Driven by t-distribution Process”,
IEICE Trans. Fundamentals, vol.E75-A. no.9, pp.1159-

1169,. 1992
0 0
-1 -1
® =
-2 -2
-3 3
00 1000 1500 00 1000 1500
0 (2) 0 (b)
-1 -1
® =
2 -2
-3 3
00 1000 1500 00 1000 1500
fch di

Figure 1: a; coefficient trajectories for synthetic speech. (a)

Original q, trajectory, (b) Estimated @, trajectory obtained by
the conventional Kalman filter( A =0.85), (c¢) Estimated a,

trajectory obtained by the robust Kalman filter( A =0.85,
€¢=0.1), (d) Estimated «; trajectory obtained by the proposed

robust sequential algorithm( A =0.85, « =3).
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Figure 2: a; coefficient trajectories for real speech 'sa. (a)

1500 2000

Real speech “sa’, (b) From the top, each trajectory represents the
estimated one of @, coefficients obtained by the conventional
Kalman filter( A =0.98), the robust Kalman filter( L =0.98,

€ =1.5) and the proposed robust sequential algorithm( 2. =0.98,
 =3), respectively.



