Effect of Task Complexity on Search Strategies
for the Motorola Lexicus continuous speech
recognition system

Sreeram V. Balakrishnan
Motorola Lexicus Division, 3145 Porter Drive, Palo Alto, CA 94304, sree@lexicus.mot.com

1.0 Abstract

As speech recognition systems are increasingly applied to
real world problems, it is often desirable to use the same
recognition engine for a variety of tasks of differing com-
plexity. For example the recognizer in a dictation system
may need to handle a highly constrained correction gram-
mar, as well as a large vocabulary dictation trigram. This
paper explores the relationship between the complexity of
the recognition task and the best strategies for pruning the
recognition search space.

We examine two tasks: 20000 word WSJ dictation at the
complex end, and phone book access using a 60 word
grammar at the ‘simple’ end. All experiments are con-
ducted using a tied state, continuous density, cross-word,
triphone HMM system, with a time-synchronous, single
pass recognizer [1] [2] . For both tasks we compare two
strategies for pruning the search space: absolute pruning,
and rank based pruning. In absolute pruning, the number
of hypotheses is controlled by eliminating ones that have a
score less than a fixed beamwidth below the best scoring
hypothesis [2] [3] . In rank based pruning, the hypotheses
are ranked by score and all hypotheses beneath a certain
rank are eliminated [2] .

We first present a description of the system used to per-
form the recognition task, along with details of the tasks
themselves. Next, a set of statistics characterizing the
behavior of the recognizer under different pruning
regimes, will be presented for each task. By analyzing
these, we will show how the different strategies will have
different speed versus error-rate trade offs. Finally, we
present results comparing the error-rates resulting from the
different pruning strategies.

2.0 System Description

All recognition experiments were performed using a sin-
gle-pass Viterbi recognizer with cross-word triphone
HMMs. The search is implemented by maintaining a set of

hypotheses Q = {g,...q,}, where each hypothesis con-

tains a word history # = k(q), a pronunciation network
node id n = n(q) and a score s = s(q). Associated with
each word history is a context ¢ = c¢(#), which consists of
the last »— 1 words, where, n is the order of word n-gram
language model (if one is being used). In the case of large
vocabulary recognition, the pronunciation network is actu-
ally a pronunciation tree, and associated with each termi-
nal leaf is a list of words. For constrained vocabulary tasks
where the grammar is a set of BNF rules, the pronuncia-
tion network is obtained by first compiling the BNF rules
into a network with arcs corresponding to words, and then
replacing the words with their pronunciation.

Assuming an utterance is divided into T frames of speech
fy---fy, the search implemented by the recognizer pro-

ceeds as follows[1] [3] [4] . The recognizer starts at time
t = 1, with a set of hypotheses Q that has a single start
hypothesis g. It then loops through the speech frames,
updating the scores of the hypotheses in Q0 with each new
frame. Hypotheses that pass a propagation pruning beam-
width propagate(q) are allowed to propagate to the child
nodes of the hypothesis. The new hypotheses are put in the
set Q. ; in addition, hypotheses that are potential word

new ?

ends are inserted in the set Q The hypotheses in

word *
Q,..rq are then checked to see if they pass a word propa-

gation pruning beamwidth propagate word(g). If they
do, then they are allowed to start new word trees, and the
. All the

resulting hypotheses are also inserted into Q,,,.
hypotheses in Q are tested to see if they pass a survival

pruning beamwidth, survive(q). If they do, they are
that have

new

inserted into @ .. Next, all hypotheses in Q

new
the same context c(k(q)) and node n(q) are merged, by
removing the hypothesis with the lower score. Finally,
Q,,, becomes Q for the next loop.

The Pseudo Search Code in Table 1 summarizes the above
algorithm. The pruning of the search is controlled by the



true/false functions: propagate(q) , propagate_word(q) ,
and survive (q) . We explore two forms of these functions.
In the first case, absolute pruning, a beamwidth is set in
terms of the difference in score between a hypothesis and
the best scoring hypothesis in the set. If this difference is
below a preset beamwidth, then the function returns true.
In the second case, rank pruning, the hypotheses are
ranked according to their score. Higher scores will have
lower ranks, and if a hypothesis has a rank lower than a
preset rank, the function returns true.

TABLE 1. Pseudo Search Code for Recognizer
forr =1...T
Update_Scores (Q, f,)

Propagate_Children(Q, Q,.,,s @pon)
Propagate_ Words(Q,.,,» @ pon)
Prune(Q, 0,

Merge (Q

new)

Q = Qnew

end

3.0 Task description

The two tasks chosen to investigate the different pruning
strategies are at opposite ends of the complexity spectrum.
The first task, is large vocabulary dictation using a 20k
vocabulary and trigram backoft language model. Both the
vocabulary and trigram are based on the November 1992
ARPA WSJ evaluation. A left cross word triphone system
was built using the WSJO training set (SI 84, 7200 training
utterances), with 30K Gaussians. The test set consisted of
333 sentences drawn from the November 1992 evaluation
test set.

The second task, is constrained dialog phone book access.
The vocabulary consists of 60 words and the set of possi-
ble utterances is constrained by a set of BNF rules. These
rules allows phrases such as:

please exit to main menu
main menu please
business listings please

please cancel

The BNF rules are compiled into a network with 380
nodes, with each node having on average between 3 and 4
word arcs. This word network is then converted into a pro-
nunciation network by replacing the words with their pro-
nunciations.

The system was trained on the ATIS sentences of Macro-
phone, and left cross word triphone models with 30K
gaussians were built. We collected 74 test utterances from
3 different speakers recorded over a telephone line. The
complexity of this task is very similar to command and
control, and other menu based dialog systems, and as such
was taken as proxy for the behaviour of such systems.

4.0 Analyzing Search Efficiency

An ideal pruning strategy will prune out all hypotheses
except the one that leads to the word sequence with the
highest probability. Referring to this hypothesis as the
aligned hypothesis, we can characterize how efficient
absolute and rank pruning strategies are, by recording the
score and rank of the aligned hypothesis relative to the
best scoring hypothesis at each time step during recogni-
tion. We define search efficiency in terms of the average
number of hypotheses per frame of speech, or mean(|Q|) .
Assuming that the amount of computation per hypothesis
is constant, mean(|Q|) represents the total amount of com-
putation required to update, propagate and prune the
hypothesis set.

To obtain the data on the score and rank of the aligned
hypotheses, we first ran the recognizer using absolute
pruning and adjusted the beamwidths to be slightly wider
than needed to obtain the best error-rate. An initial run was
performed for each task, to generate detailed frame to
HMM state alignments for the final word sequences
obtained by the recognizer. A second run was then per-
formed, during which the score and rank of the aligned
hypothesis were tracked for each frame of speech.

FIGURE 1. Difference between best and aligned
hypothesis score vs. % frames with lower difference
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Figure 1 plots the cumulative percentage of frames of test
speech versus the difference in score between the best
scoring hypothesis and the aligned hypothesis, for both
tasks. Figure 2 shows the cumulative frame percentage
versus the rank of the aligned hypothesis, for just the
phone book task, and Figure 3 is the same as Figure 2
except for the WSJ 20k task.

FIGURE 2. Rank of aligned hypothesis versus % of
test frames with lower rank for phone book access
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FIGURE 3. Rank of aligned hypothesis versus % of
test frames with lower rank for WSJ 20k dictation
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Table 2 shows the actual error-rate obtained for each task
along with the value of mean(|Q]) and the absolute beam-
width used for survive(g) , with a) showing the results for
beamwidths set to the level used in generating Figures 1-3.
The results in b) and c) show that any reduction of the
beamwidths beyond the level in b) causes an increase in
error-rate. This agrees well with the plots shown in Figure
1, since for both tasks, the beamwidth of survive(g) in b)
corresponds to the point where 100% of the test frames

would survive being pruned, whereas for ¢) a small frac-
tion of the aligned frames start to get pruned out.

The plots of the rank of the aligned hypothesis reveal a
different story. For the case of phone book access, 99.5%
of the test frames have an aligned rank less than 150, and
for WSJ 20k the same 99.5% mark is reached at rank
3000. According to Table 2 b), with optimal absolute prun-
ing, mean(|Q|) for the phone book task is 146, which is
close to 150, whereas the mean(|Q|) value for WSJ 20k is
10900. This actually corresponds to the point at which
only 57 frames out of 122,246 or 0.05% have a higher
aligned rank. Thus there may be considerable scope to
tighten the search in the case of WSJ 20k by using rank
based pruning.

Further justification for this supposition can be drawn
from Figure 4. In addition to tracking the rank and score of
the aligned path, we also track the number of the hypothe-
ses with a score above the best hypothesis minus the sur-
vive(q) beamwidth. We term this the beamwidth rank,
and the ratio of the rank of the aligned path to the beam-
width rank is a measure of search inefficiency, since all
hypotheses with a rank greater than the aligned rank and
less than the beamwidth rank, are wasted computation.
Figure 4 shows plots of this ratio for both tasks.

TABLE 2. Summary of Results using absolute
pruning

Phone Book WSJ 20K

a) word error rate | 10.7% 13.3%
mean(|Q|) 186 12600
beamwith of 90 220
survive (gq)

b) word error rate | 10.7% 13.3%
mean(|Q)) 146 10900
beamwith of 80 200
survive (q)

<) word error rate | 11.8% 13.8%

mean(|Q)) 129 9400
beamwith of 70 180
survive (gq)

Clear differences for each task are apparent. For the WSJ
20k task, 98% of the test frames have a ratio less than 0.1,
while the equivalent percentage for the phone book task is
only reached at a ratio of 0.4. Thus absolute pruning seems



to be far more inefficient for WSJ 20k than it is for phone
book access.

To verify this, a final set of experiments were conducted,
in which absolute pruning was combined with rank based
pruning. survive(q) was modified so that it would return
true only if the score of ¢ was within an absolute beam-

width of the best and the rank of g was less than a fixed
rank beamwidth. The absolute beamwidths were initially
set to be the same as Table 2 b), and the rank beamwidths
were set as tight as possible without affecting the error-
rate. The absolute beamwidths were then increased to the
point that they played no part in pruning, leaving only the
rank beamwidth as the effective pruning mechanism. The
results are summarized in Table 3, with a) showing the
results using absolute pruning with effective beamwidths,
and b) the results with the absolute beamwidths widened
to the point it was ineffective.

FIGURE 4. Ratio of aligned path rank to rank of
hypothesis with score = best - survive(g)
beamwidth, versus % frames with lower ratio.
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TABLE 3. Results of combining rank based pruning
with absolute pruning for survive (g)

Phone Book WSJ 20K
a) word error rate 10.7% 13.3%
mean(|Q)) 100 5450
rank beamwidth 200 4000
absolute beamwidth | 80 200
b) word error rate 10.7% 13.3%
mean(|Q)) 184 6400
rank beamwidth 200 4000
absolute beamwidth | 800 800

For both tasks, the addition of rank based pruning allows a
substantial increase in efficiency without compromising
accuracy. However, the gains are much greater for the
WSJ 20k task, with a reduction in mean(|Q]) of 50%, ver-
sus a reduction of only 30% for the phone book task. In
addition, Table 3 b) shows that when only rank pruning is
being used, the error-rate does not change, but mean(|Q|)
increases by 84% for the phone book task, whereas it only
increases by 17% for the WSJ 20k task. This indicates that
the absolute pruning beamwidth plays a larger role in
pruning the search space for the phone book task. Compar-
ing the results in Table 2 b) with Table 3 b), it appears that
if a choice has to be made between rank or absolute prun-
ing, then absolute would be more efficient for the simple
phone book access task, while rank based pruning would
be more effective for the large vocabulary task.

5.0 Conclusions

For both constrained dialog phone book access, and WSJ
20k large vocabulary recognition, combining rank based
pruning with absolute pruning provides a significant gain
in search efficiency over only absolute pruning. However,
the gains are much more significant for the more complex
large vocabulary task. If only one pruning strategy can be
implemented, then absolute pruning is more efficient for
constrained dialog tasks such as the phone book access
task. In contrast, rank based pruning is much more effi-
cient for the highly complex WSJ 20k dictation task.
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