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ABSTRACT

This paper considers the improvment of speaker identification
performance in reverberant conditions using additional lip in-
formation. Automatic speaker identification (ASI) using speech
characteristics alone can be highly successful, however problems
occur with mis-matches between training and testing conditions.
In particular, we find that ASI performance drops dramatically
when given anechoic training but reverberant test speech. Pre-
vious work [1][2] has shown that speaker dependant information
can be extracted from the static and dynamic qualities of moving
lips. Given that lip information is uneffected by reverberation,
we choose to fuse this additional information with speech data.
We propose a new method for estimating confidence levels to al-
low adaptive fusion of the audio and visual data. Identification
results are presented for increasing levels of artificially reverber-
ated data, where lip information is shown to provide excellent ASI
peformance improvement.

1. INTRODUCTION

Room reverberation of speech occurs to some extent in almost any
enclosed area. As sound is reflected off walls back to the source,
the resulting speech spectrum is smeared, reducing both speech
intelligibility and speaker dependent qualities. We can mathemat-
ically express a reverberated signal r(n) as the convolution of the
original signal s(n) with the room impulse response h(n):

r(n) = s(n) * h(n) (D

The effects of speech reverberation on Automatic Speaker
Recognition (ASR) has not been studied extensively in the past,
however work which has been done demonstrate a considerable
drop in recognition performance. The case of Automatic Speaker
Verification (ASV) under varying reverberant conditions has been
considered [3], and it is shown that ASV peformance degrades
sharply as reverberation time is increased and/or the enclosure
size is decreased.

Other researchers [4] have considered the use of acoustic ar-
ray processing and spectral normalisation to develop a more ro-
bust ASR system in reverberant conditions. Some performance
improvement can come about as a result of these steps.

In this paper we propose the use of lip information as an ad-
ditional source of information to fuse with reverberated speech
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features for robust ASI. As visual lip information is uneffected
by reverberant conditons, we are interested in particular to evalu-
ate the extent to which lip information can improve identification
performance as reverberation of speech increases.

For experiments we use the M2VTS multi-modal database [5]
consisting of 37 subjects counting from zero to neuf in French
over five different recording sessions.

2. FEATURE EXTRACTION
2.1. Audio Sub-system

The audio sub-system feature extraction is quite standard, with
mel-cepstral features [6] being extracted from the speech. Mel-
cepstral features have been shown in the past to be well suited for
speaker identification purposes, hence their use in this application.

2.2. Visual Sub-system

We have presented in detail [1] a new method for lip tracking
using a combined chromatic-parametric approach, however, un-
like past approaches [7][8], the parametric lip contour model is
derived directly from the chromatic information, with no mini-
mization procedure required to fit the model to the lips. Features
are extracted via colour profiles taken around the lip contour. As
the contour model follows the moving lips, the chromatic features
are consistent with respect to the lip position. This is illustrated
in Figure 1.

Figure 1: Colour Profile Vectors

Features are reduced via the use of Principal Compo-
nent Analysis (PCA), followed by Linear Discriminant Analy-
sis (LDA). In this way, lip features are chosen which provide the
greatest discrimination between speakers. We describe these fea-
ture reduction steps in more detail elsewhere [1].



3. PRIMARY CLASSIFIERS

Classification of both audio and visual data was achieved via the
use of the Gaussian Mixture Model (GMM). These models have
been used extensively in the past for the modelling of the output
probability distribution of features for a particular speaker [6].
The multi-modal nature of the model allows it to cater for a wide
range of voice characteristics for each speaker.

Experiments also showed that the distribution patterns of fea-
tures from a speaker’s moving lips, over a period of time, held
speaker dependent qualities, as well as the actual static features
themselves. Based on this, we chose also to use the multi-modal
nature of the GMM to allow it to model the the wide variation in
features from a speakers moving mouth.

The decision rule for identifying a speaker, based on Bayes’
rule [6], is defined as:

T
§ = arg max ; log p(z+|As) 2

where x; is an input feature vector at time ¢, and A is the
audio or visual model for speaker s of S total speakers.

4. AUDIO-VISUAL FUSION SYSTEM

4.1. System Structure

The aim of any fusion system is to combine information from
various sources so that, in the case of identification, the result-
ing performance is greater than or equal to the performance of
the best individual source. Anything less than this is termed as
catastrophic fusion [9], and is of course undesirable for a speaker
identification problem.

Two main approaches can be taken for fusion, being that of
direct fusion, and output fusion [10]. In direct fusion features
from each source are combined prior to classification, where-as in
output fusion, features from each source are separately classified,
with the classifier outputs then being combined. Past research
[11] has shown that output fusion is in general superior for audio
and visual fusion.

The basic structure of our fusion system is that of asyn-
chronous linear output fusion. Here the identification decision
is based upon a linear combination of outputs from the audio and
visual classifiers after the speaker has spoken for a short period of
time. This can be expressed mathematically as:

P(sa®,7") = aP(Xc[T) + (1 - ) P(XL]E")  (3)

where P(s|@*, V) is the probability of speaker s having gen-
erated the audio and visual feature vectors £* and Z”, given the
audio and visual primary classifiers A; and A7 and a weighting
factor of @@ € [0, 1].

Given this fusion structure, the main challenge is to determine
an appropriate weighting to assign to the audio and visual classi-
fier outputs. As the level of speech degradation increases due to
increasing noise, we would wish to place more and more empha-
sis on visual information. Hence we need some way to assign
a measure of confidence to the incoming audio and visual data,
drawn from the data itself. The following sections present three
methods for allocating weights to audio and visual data.

4.2. Equal Prior Weights

For an artificial test set, where the identity of the target speaker
is known, the optimum value of « can be empirically determined
by varying the level of «, according to Equation 3, between 0
and 1. This however is inconsequential for a real life speaker
identification application where the identity of the speaker is of
course not known.

Without making any prior assumptions about the quality of
each data source, a reasonable compromise is to set & = 0.5. In
other words we weight the contribution of both audio and visual
data equally for the identification problem. The results for using
this technique are presented in Section 5.

4.3. Dispersion Confidence Measure

The technique presented in Section 4.2 is not capable of adapting
to the surrounding environment in that the system weighting is
fixed regardless of the quality of either data source. The technique
presented in this section is capable of adapting the weighting fac-
tor based upon the quality of data at the time of testing.

The system achieves this by considering the dispersion of
scores, or average output log-likelihoods, from the audio and vi-
sual primary classifiers. In general, we would expect that for
the case of high-quality information, the GMM score assigned
to the correct speaker model would be significantly higher than
the scores assigned to the other speaker models.

Based on this, the confidence measure we used was taken as
the difference in the top two speaker models scores, normalised by
the mean of all speaker model scores u, for the audio and visual
data respectively. This can be expressed for S speakers as:

Ubest = Ig IMAX log P(Xs|T) @

Unextbest — ALY 111118%)(5 log P()\sl:if)y ) # i Upe st (5)

S
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Umean = g 2 lOg P()‘llz) (6)
i=1

U, —Uu
K= | best newtbestl (7)

|umean|
where k is the confidence measure which is evaluated over
both audio and visual classifier outputs, notated as Kgq and Kyis.
We then evaluate the weighting factor v € [0, 1] as:

K
o= aud (8)
Kgud + Kvis
The results from this technique are also presented in Sec-
tion 5.

4.4. Secondary Classifiers

The dispersion measure is in itself a reasonable confidence mea-
sure for audio-visual fusion, however the technique breaks down
when an incorrectly classified score stands out well above the
other classifier scores. In this situation the confidence measure
will assign a high level of confidence to the particular data while
the classifier outputs are quite incorrect. We can improve on this
by designing a system which can provide an indication of the
global accuracy of the best classifier scores when comparing be-
tween the audio and visual sub-systems.



4.4.1. Mathematical Description

To achieve this we propose a secondary classifier stage, where
the probability distributions of the scores of the primary classi-
fiers are modelled themselves by uni-variate Gaussian models. In
other words, we postulate that the distribution of scores u from
a speaker’s Gaussian Mixture Model can be adequately modelled
as:

1 1 =1 ]
g = - = — ;) 2 — b
pilw) = yrar7eee? [~ — ) 5 (w = )
&)
where:
- ¢ € [1, 5] for S speakers

- u 18 the output log-likelihoods from audio or visual pri-
mary GMM A¢*¢ and XY*%, where w = u; for ¢ €
[17 27 v 7Nf7“ames]

- pand ¥ are the mean vector and covariance matrix respec-
tively for the output log-likelihoods from the audio and vi-
sual primary models A¢*¢ and \Y*°.

The distribution of the scores from a speaker’s model is called
the output probability distribution (OPD). The motivation for
modelling OPD’s with univariate Gaussian models is evident from
Figure 2. The diagrams show the distribution of output probabil-
ities for an audio primary classifier, tested on four different oc-
casions. For the first three occasions, the classifier is tested with
its own training data from three different sessions, whilst on the
fourth session, the same classifier is tested with noisy test data.

Session 1 - CLEAN

4l

Session 3 - CLEAN

Session 2 - CLEAN

probability

S e g

5 5 B
probability

o 2 o 2

O R

&

Al

Session 4 - NOISE

probability
&

probability
@

0

Figure 2: Output Probability Distributions (OPD)

By modelling the OPD’s for high quality data for each
speaker model, we have a basis to indicate the quality of incoming
data to each speaker model.

The absolute values of the log-likelihoods from the primary
classifiers are independent of the mean of the log-likelihoods of
all classifiers. Hence before training the secondary classifiers on
the primary OPD’s, we normalise these values by dividing by the
global mean of the output log-likelihoods from all speaker classi-
fiers. We define the global mean f14044; for audio and visual data
as:

Nmode
ZS frame umode
77;,ogel _ i=1 j=1 ] (10)
glebe Nyl S

where:
- mode C [aud, vis]

- S is the number of primary speaker models

- Nmode s the number of frames for each speaker for either

audio or video data, used to evaluate the OPD

- u?“d and ufis are the frame output log-likelihoods
th

from audio and visual primary classifiers for the ¢
mode

speaker respectively, where u;] = ug?"de for j €
d
(1,2, Nfome

We then normalise the primary output log-likelihoods as:

aud aud aud
Yi =Y — Hglobal

an

vis

Y =l = plihal (12)

fori € [1,2,...,S5], where S is the number of speakers.

It is important to note that the secondary models are trained
on the output log-likelihoods from the correct speaker’s primary
model only. In other words, the secondary model ¢; is trained
with the log-likelihoods resulting from the primary audio and vi-
sual GMM’s A¢%? and A\Y*® when they are self tested with training
data from speaker ¢. Thus at test time, we are only interested in
evaluating the output log-likelihoods from the primary audio and
visual maximally likely GMM’s A¢“? and A%**, where § is calcu-
lated as:

T

mode

mode | ymode
|A7%)

Smode = arg max > log p(a} (13)
t=1

where S is the number of speakers and Ty o4 is the number of
frames of data available for testing for either the audio or visual
frames of information.

In other words, we only evaluate the audio and visual sec-
ondary models ¢?*¢ and ¥ corresponding to the best audio and
visual scores from the primary classifiers. Thus we determine the
final audio and visual confidence measures as:

aud

Vaud = P(@Sbest |y§:it) (14)
Vyis = P(@ZZ:M |y:l;i:st) (15)

aud vis :
where 5" and 7 are the secondary Gaussian models

corresponding to the best scores from the primary audio and vi-
sual GMM’s, and y?i‘i , and y:Z:S , are the respective normalised
primary output log-likelihoods.

The audio and visual confidence scores are finally normalised
to add to one. Hence for the definition of « in Equation 3 we

calculate o € [0, 1] as:

o= — Youd (16)
Vaud + Vuis

5. EXPERIMENTS

We trained and tested the audio and visual identification systems
using the M2VTS multi-modal database [5]. The database con-
sists of over 27000 colour images of 37 subjects counting from
zero to neuf, in French, on five different occasions. We used the
first three recording sessions as training data, and the fourth ses-
sion as test data.



5.1. Audio Sub-system

The speech data was artificially reverberated using an image
method [3], where the level of reverberation was increased by in-
creasing the reflection coefficients of the simulated room. One of
the aims of the testing process was to evaluate the improvement
from training with clean and testing with reverberated speech, to
training with clean and reverberated speech. To evaluate the latter
case, we reverberated the training speech in a room which was
different to any of the conditions the test speech was subjected to,
this being a realisable step for a real-life problem.

We found that the addition of reverberation to the training
data, dramatically improved results for testing with reverberated
speech data, however the identification accuracy was still low for
high reverberation time. The results of this are shown in Figure 3,
which confirm results presented in [3].

5.2. Fused System

The speaker identification results for increasing speech reverber-
ation are shown in Figure 3.
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Figure 3: Speaker Identification Results

It can be seen that the fusion system is able to select linear
weighting values «, for each speaker’s test data so as to keep the
resulting fused performance well above the best performance of
either the audio or visual information. Hence we are avoiding
catastrophic fusion and providing a satisfactory fusion system for
speaker identification.

We observe that, with the exception of one point, the sec-
ondary classification fusion system either equals or outperforms
the fusion performance of both the fixed weight and dispersion
measure systems.

6. CONCLUSIONS

We have considered the performance improvement of speaker
identification in reverberent conditions using lip information.
Techniques for estimating confidence measures for incoming au-
dio and visual information are proposed to allow adaptive fusion
of audio and visual primary classifer outputs.

Methods proposed include confidence measures based upon
a measure of score separation within primary classifiers, as well

as secondary GMM classifiers trained upon output score distri-
butions for high quality data. The use of secondary classifiers
enables a "knowledge” to be built into the system as to the quality
of incoming audio or visual data.

The results of experiments are encouraging and show the im-
portance of lip information for speaker identification when speech
is highly degraded due to reverberation. Whilst the amount of data
per speaker is limited, results are promising for future larger-scale
work in the multi-modal area.
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