A NAME ANNOUNCEMENT ALGORITHM WITH MEMORY SIZE AND
COMPUTATIONAL POWER CONSTRAINTS

Ze’ev Roth,
DSP Group,

ABSTRACT

This paper describes an algorithm for name (surnames and
personal names) announcement in American English
implemented on DSP Group’s SmartCores (registered trade-
mark) digital signal processor (dsp) core. The name
announcement module is targeted for low cost applications
therefor the amount of memory that can be allocated for
dictionaries, program code, and runtime parameters is limited.
The required response time of 0.5 seconds limits the
computations performed in the linguistic analysis phase of each
name. The synthesis scheme is limited by the real time capacity
of the processor (since this task may be performed in parallel
with other real time tasks).

1. INTRODUCTION

Name announcement is the task of producing a signal that is the
pronunciation of a name given a text string containing the
spelling of that name. Name pronunciation differs from
ordinary language to speech, due to the irregularities of names
amongst other factors. Two prominent causes for this
irregularity, are the varied orthographic conventions, and the
diversity of languages of origin of names in American English,
which may be attributed to the USA being a "melting pot". It is
estimated that there are 1,500,000 different surnames in the US,
this very large number of names (and human nature) ensures
variety. Languages differ, amongst other things, in their
phonetic and stress rules; e.g., Johnson (of English origin) is
stressed on the first syllable while Perez (Spanish origin) is
stressed on the second syllable.

Name announcement is a specialized text to speech task. An
overview of the text to speech (T'TS) systems is given in [5]. A
detailed description of one of the early TTS systems called
MITalk is given in [1]. In [4] an approach to solve the name
announcement task is proposed (see also references therein).

We intend to incorporate the Name Announcement system in
DSP Group’s Telephone Answering Device (TAD) product
line. In the TAD it will be hooked to the Caller Identity (CID)
module. This module detects and decodes the signal sent by the
central office to the subscriber telephone between the first and
second ringing. This signal contains the telephone number of
the calling party as well as the name of the person to whom the
telephone (of the calling party) is registered. The goal of the
name announcement system is to announce the name of the
calling party while the phone is still ringing.

TAD systems being in the consumer electronics realm, are cost
sensitive devices. Therefor there are limitations to the size of
the memory that can be used by the announcement algorithm.

Judith Rosenhouse

Technion

This influences the design in that the exceptions list (usually
found in this type of systems) must be kept relatively short
(compared to the large number of names). Another constraint
that was taken into account in the design is the algorithm’s
computational complexity, which is limited by the response
time requirement and the processing power of the SmartCores
(registered trademark).

The pronunciation strategy can at one extreme Americanize all
names, and on the other extreme use the language of origin of
each name at the other extreme. In the spirit of [3] we use a
strategy that the system should pronounce the name like an
educated native American speaker having some knowledge of
foreign languages and foreign names [7].

The paper plan is as follows: in section 2, an overview of the
system is shown, in section 3 the name announcement algorithm
is described. Two modules are elaborated on in sections 4 and
5. Finally, in section 6 a short summary is given.

2. SYSTEM OVERVIEW

A block diagram of the name announcement system is shown in
Figure 1. In the figure, the first block (Text to Phoneme)
transforms the written text into phonetic representation; we
refer to it as the linguistic block. The second block (Phoneme to
Signal), given an input phonetic representation, synthesizes a
speech signal; we refer to this block as the phonetic block (or
the synthesizer). We adopted the phonetic representation units
as proposed by [2].

Name Ti);t Name Pho?gme Signal
(as text) (phonetic) o synthefic
Phoneme Signal speech)

Figure 1: Name Pronunciation Task Block Diagram

3. RULE BASED NAME
PRONUNCIATION

A block diagram of our rule based pronunciation method is
shown in Figure 2.

* Normalization module removes punctuation from the input
name, replaces titles by their full spelling (e.g., replace
“Mr.” by “mister”), removes spaces, and converts the input
spelling into lower case alphabetic characters.

» Exception List Search module searches if a name is in the
exceptions dictionary. The dictionary itself contains

exception names and their transcription. For non-exception
names phonological processing is performed.

The following five modules are at the heart of the phonological
processing:

» Language module decides what is the language of origin of
the name; the default being English is replaced by an
alternative (single language) only if there is compelling
evidence to justify this. All of the following processes
depend on this decision.

* Morphology module parses the name by identifying
prefixes, roots, and suffixes of the name. Currently it is
performed only for English origin names.

» Transcription module generates the sequence of phonetic
segments for pronunciation. It is based on the specific
language of origin transcription rules.

» Syllable Structure module partitions the name into
syllables, the parsing is language of origin dependent.

» Stress module assigns stress values to each syllable. This
module depends on the language of origin as well.

The language and morphology tasks are complex: both are
usually unable to produce a unique answer [4]. Rather than
submitting to the generation of multiple possible pronunciations
of the same name, corresponding to the different choices of
language and morphology, we constrain the language
identification to yield a single deterministic result, i.e., the
language of origin is taken as English unless compelling
evidence exists for applying other than English rules, which is
in accordance with the determined pronunciation strategy.

4. Language of Origin Identification

The purpose of this module is to identify the language of origin
of the name. The system has several types of operators specially
designed to discriminate between the main origin languages.
Initially we’re dealing with 5 languages of origin: English,
Spanish, French, German, and Italian. Should the need arise
additional languages of origin will be added on an as-needed
basis. Potential languages of origin to complement the present
set are: Russian, Polish, Japanese and Chinese. Since we’re
dealing with a fairly small number of languages the operators
do not form a hierarchy. Thus for each input name there is a
competition between the set of languages of origin which is the
most probable to be the language of origin of that name.

The basic method used by the language identification module is
a bi-directional search starting from both ends of the name,
searching for prefix and suffix language identification rules.
The forward direction of search finds all contiguous strings of
morphemes (language identification rules) that match the
spelling of the name starting from the beginning (for prefixes
and mid rules). The backward direction of search does likewise
working back from the end of the name to identify suffixes.

The database of morphemes that form the language
identification rules were specifically designed to
distinguish/differentiate between the various languages, thus

morphemes common to several languages were omitted from
this database.

Input Name

v

Normalization
(convert to lower case,
deal with puctuation)

IsIn
Exceptions
List

found .
Synthesize

not found

Language non-English

Identification

origin

English
origin

Morpheme Parsing

Language

Transcription(L)
Morpheme to
Phonemes

Syllable Parsing(L)

v

Stress Rules(L)

v

Synthesize

Synthesized Name Aloud

Figure 2: Name Announcement Algorithm

The procedure used by the language module consists of two
steps described language score and language selection. At
present the system has several hundred language identification
rules obtained from [Golding] and books on surnames.

Language Score. The strength of a rule’s recommendation is
taken to be proportional to the length of its letter sequence, this
is a crude heuristic based on [6]:* For all four languages (i.e.,
English, French, Italian, German —ZR, J.R.), the shorter the
syllable the more frequent its occurrence”. The strength of each
matched rule is added to a score kept for the appropriate
language analysis name. The procedure is outlined below.

a) Init

b) while language identification list end not reached;
¢) get next rule from list
d) determine rule type (prefix, mid or suffix)

e) search for rule match in name (according to rule
type)

f) if match was found
g) add search results to database
h) add rule length to language score
1) endif
j) end while

Language Selection. The selection module takes into account
the scores obtained by the Language Score module in its
decision making. The scores are sorted in descending order.
Then a heuristic decision rule based on empirical results is
applied as outlined below.

a) A= the difference between the first ranking language and
the second ranking language

b) if A 32 or the score of the second ranking language is
greater than 2,

c) select the first ranking language as the language
of origin

d) otherwise,
e) selected language of origin is English

) endif

Modifications of this basic procedure are done according to test
results.

5. Morphology

The system produces a particular morphological analysis of a
name by applying a morpheme operator to it. Each morpheme
operator has an associated morpheme. Application of the
operator at some specified index of the name asserts that the
name contains that morpheme starting at that index. Currently
morpheme analysis is performed only for names for which the
language of origin was decided to be English. This may be
modified, as testing will progress. The Morphology module
does not utilize the results of the language identification
module, since the morphological operators are different from
the language identification rules that were specially designed to
differentiate between the various languages of origin.

The main incentives for performing morphological analysis are
compound names, such as FOOTHILL and BRIDGEPORT. Such
names would cause the transcription rules to generate an
erroneous transcription due to the interaction of the two
morphemes across syllable boundaries. In the first case, the
“TH” would be considered a single phoneme, while in the latter

case the “E” would not be silent since it is not easily recognized
as a final “E”. A second possible motivation is that parsing to
morphemes can simplify the task for the syllable analysis
module, though it takes its toll in memory space since one
would need to keep the transcription of all morphemes.

The system has several hundred morpheme-operators, gathered
from books on surnames. The morphemes break down into
three classes: prefixes, roots, and suffixes.

The basic blocks comprising the Morphology module are:
e Morphology analysis

e Prune analysis results

e Generate morpheme covering

e Filter covering

e Score covering

e Select covering

For short names no morphological processing is done, rather the
entire name is transcribed and parsed into syllables.

The Morphology module generates the morphological analyses
of the name based on a database of morphemes in a similar
manner as the language identification module works. This
database is different from the one used by the language
identification module since the latter was specifically designed
to discriminate between the different languages, thus
morphemes that exist in several languages and were omitted
there were added to the morphological database.

The Pruning block reduces the analysis results to contain a
single prefix morpheme at most, multiple middle morphemes,
and a single suffix morpheme at most. Thus at the end of this
step we have a set of morphemes that match the name. The
Morpheme Covering block generates various coverings of the
input name using different subsets of the morphemes obtained
by the analysis and pruning steps. Each covering corresponds to
one of the subsets of this set. The term covering describes the
process of laying the letters of each of the morphemes of a
subset on the letters of the input name. Therefore, in a covering,
some of the letters of the name are accounted for by one or
more of the morphemes while some of the letters are not. The
coverings are filtered for legality by the Filter Covering block
which tests that there is no morpheme overlap in the covering,
and that letters in the name that are not accounted for, are
reasonable linguistic units. The legal coverings have their
fitness evaluated by the Score Covering block. The highest-
ranking covering is chosen as the best morphological parsing of
the name.

Generate Morpheme Covering

The output of the prune analysis results module can be
inadequate for defining a morphological parsing of the input
name, since it could contain incompatible morphemes, or not
account for all the letters in the name. By incompatibility we
mean that the morphemes could overlap (two morphemes in an
analysis overlap if they contain the same letter in the name) or

the gaps between morphemes could form unsuitable
morphemes. Hence, it is desirable to find a “covering” of the
input name by a subset of the morphemes found in the analysis.

Any subset of non-overlapping morphemes of the set of
morphemes found by the analysis module, plus the remaining
letters of the input name (those letters that are not accounted for
by this subset), is called a covering of that name by the set of
morphemes. We consider two examples shown in Table 1

WHITAKER BOTHAM
Prefix morphemes | WHIT BOTH
Mid morphemes
Suffix morphemes | ER HAM
Use both H#WHI THAKH#ER#
Only prefix H#WHI THAKER# #BOTH#AM#
Only suffix #WHITAKHER# #BOT#HAM#
Use none #WHI TAKER# #BOTHAM#

Table 1: Examples of the Covering process

The task of choosing the best possible coverings is left to other
modules. This module concentrates on generating candidate
coverings. Suppose that the maximal number of middle
morphemes is m, then the number of possible coverings is:
242" = 2™ (prefix, m middle, and suffix). For m=4 this
becomes inhibitive, as the scoring process includes transcription
and parsing into syllables. Since a full search is not desirable we
adopt the following strategy: choose no more than two middle
morphemes. Assuming that there are no more than 4 middle
morphemes one prefix and one suffix (6 altogether), the
maximal number of coverings generated using this strategy is:
2#(14+4+4%3/2)*2= 44 (which is about 30% reduction in RAM
requirements).

Thus, it is desired to form a covering of the input name using as
many of the morphemes that were found, such that no overlap
occurs between the morphemes and the remainder of the letters
in the input name (those that were not matched by a morpheme)
make up a reasonable morpheme.

Filter Covering

A covering of the input name generated by the previous module
is checked by the filter-covering module for compliance to two
regularity conditions:

* no overlap between morphemes of the covering

» the letters of the input name remaining unmarked, after
marking those that belong to each of the morphemes in the
analysis of the current covering, contain neither isolated
consonant nor an isolated vowel. This can be stated as: A
gap left by a covering must include an A, E, 1, O, U, or Y,
and at least one consonant.

Score Covering

The scoring mechanism is based on the observation that in
English CVC syllables have preference over CV or VC

syllables. Hence the score per covering is computed according
to the following rule:

» Each CVC syllable adds 3 to the score, while each VC or
CV adds 1 to the score.

As an example let us return to the following example:
BOTHAM, which yields two different coverings:

1. #BOTH#AM# having a score of 4 (3+1)
2. #BOT#HAM# having a score of 6 (3+3)

Hence, in this case the second morpheme parsing is preferable.
Notice however that to obtain the parsing into syllables,
transcription is required.

Select Highest Scoring Covering

This is a simple module. Out of all legal coverings it picks the
covering that yields the highest score.

6. SUMMARY

A system for name announcement is described, as well as the
linguistic processing module. Two of the modules, language of
origin determination and morphology analysis are described in
detail. Our approach takes into consideration the constraints of
the target implementation, and naturalness of the pronunciation.

ACKNOWLEDGEMENTS

The authors wish to acknowledge Dror Jerushalmi and George
Gurevich of DSP Group for their support and help.

REFERENCES

1. Allen J., Hunnicutt M. S., and Klatt D., “From Text to
Speech - The MITalk System”, Cambridge University
Press, 1987.

2. Elovitz H.S., Johnson R., McHugh A, Shore J.E., “Letter-
to-Sound Rules for Automatic Translation of English Text
to Phonetics”, IEEE Transactions on Acoustics Speech and
Signal Processing, Vol. ASSP-24, No. 6, December 1976,
pp 446-459.

3. Fradkin R.A., “The Well Tempered Announcer”, Indiana
University Press, 1996.

4. Golding, A.R., “Pronouncing Names by a combination of
Rule-Based and Case-Based Reasoning”, PHD Thesis
Stanford University, 1992.

5. Klatt D.H.,, “Review of Text-To-Speech Conversion of
English”, J. Acoustical Society of America, 82 (3),
September 1987, pp 737-793.

6. Malecot A., “Cross-Language Phonetics”, in Th. A.
Sebcok ed., “Current Trends in Linguistics,” vol. 12 pp
2507-2536, 1974, Mouton The Hague, Paris.

7. Rosenhouse J., “Phonetic and Other Factors Affecting the
Pronunciation of Foreign Proper Names in Speakers of
American English”, IPS-98 Conference 1998.

