A GENERIC ALGORITHM FOR GENERATING SPOKEN MONOLOGUES

Esther Klabbers, Emiel Krahmer and Mariét Theune

IPO, Center for Research on User-System Interaction, Eindhoven, The Netherlands
{klabbers/krahmer/theune}@ipo.tue.nl

ABSTRACT

The defining property of a Concept-to-Speech system is that it com-
bines language and speech generation. Language generation con-
verts the input concepts into natural language, which speech gen-
eration subsequently transforms into speech. Potentially, this leads
to a more ‘natural sounding’ output than can be achieved in a plain
Text-to-Speech system, since the correct placement of pitch ac-
cents and infonational boundaries —an important factor contribut-
ing to the ‘naturalness’ of the generated speech— is co-determined
by syntactic and discourse information, which is typically avail-
able in the language generation module. In this paper, a generic
algorithm for the generation of coherent spoken monologues is
discussed, called D2S. Language generation is done by a module
called LGM which is based on TAG-like syntactic structures with
open slots, combined with conditions which determine when the
syntactic structure can be used properly. A speech generation mod-
ule (SGM) converts the output of the LGM into speech using either
phrase-concatenation or diphone-synthesis.

1. INTRODUCTION

This paper describes the underlying algorithms of D2S, which em-
bodies a generic architecture for the generation of coherent spoken
monologues from concepts. D2S is to a large extent domain and
language independent. It was originally developed for the Dial
Your Disc (DYD) system, which generates English monologues
about Mozart compositions derived from information found in a
database (van Deemter et al. 1994, Odijk 1995, van Deemter and
Odijk 1997). More recently it formed the core of the GoalGetter
system, which produces Dutch soccer reports on the basis of Tele-
Text pages (Theune et al. 1997a), and of the VODIS system, which
outputs English and German route descriptions on the basis of a
‘trip table’ (Krahmer et al. 1998). For the sake of illustration, we
take the GoalGetter system as our running example.

Essentially, D2S consists of two big modules: a language gener-
ation module (called LGM) which converts a typed data-structure
into a so-called enriched text, i.e., a text annotated with informa-
tion about the placement of accents and boundaries, and a speech
generation module (called SGM) which turns the enriched text into
a speech signal. One of the interesting features of LGM is that it
does not follow the relatively common pipeline architecture for lan-
guage generation in which text and sentence planning precede lin-
guistic realization. In fact, LGM contains hardly any global text
planning. The only assumption is that a text consists of one or more
paragraphs, each paragraph in turn consisting of one or more sen-
tences. The ‘lack’ of global text planning is compensated for at sen-

10n line demonstration: http://iris19.ipo.tue.nl:9000/english.html.

tence level: sentences are generated from so-called synractic tem-
plates, which combine TAG-like syntactic structures with condi-
tions which determine when the syntactic tree can be used properly.
The generation strategy employed by LGM may be characterized as
‘survival of the fittest sentence(s)’: each generated sentence leads
to an update of the context model, and the conditions on the tem-
plates determine which syntactic structure(s) are suitable given the
new state of the context model. If there are several currently suit-
able templates —and this is typically the case— L.GM makes a non-
deterministic choice among them. The advantage of this method is
that a given input will lead to a different output text each time it is
fed into the system. This variability is assumed to be more ‘pleas-
ant’ for the hearer. The output of LGM is fed into the speech gen-
eration module (SGM). Ideally, a method for generating speech in
D2S should be flexible: it should be able to deal with the variabil-
ity and the prosodic annotations in the LGM-output. Moreover, it
should yield high quality speech output. Since no existing method
fully satisfies both requirements, we adapted two speech generation
methods to suit our needs: phrase concatenation and speech syn-
thesis. Phrase concatenation scores high on naturalness, but less on
flexibility; for speech synthesis the opposite holds. The remainder
of this paper mimics the bipartite structure of D2S: in section 2 we
take a closer look at LGM, while in section 3 we go into SGM.

2. LANGUAGE GENERATION

I. Syntactic Templates One of the main characteristics of LGM
is the usage of syntactic templates. Figure 1 contains an example
from GoalGetter. Formally, a syntactic template o = (S, F,C, T,
where S is a syntactic tree (typically for a sentence) with open slots
in it, F is a set of links to additional syntactic structures (typically
NPs and PPs) which may be substituted in the gaps of S, C'is a (pos-
sibly complex) condition on the applicability of ¢ and a T is a set
of topics. Let us discuss the four components of the syntactic tem-
plates in some more detail, beginning with the syntactic tree S. The
trees have the form of an initial tree in Tree Adjoining Grammar
(TAG, Joshi 1987): all interior nodes of the tree are labeled by non-
terminal symbols, while the nodes on the frontier are labeled either
by terminal or non-terminal symbols, where the non-terminal nodes
on the frontier are the gaps which are open for substitution and are
marked by a |. Like in the Lexicalized version of TAG (LTAG,
Schabes 1990), we demand that the frontier contains at least one
terminal, lexicalized node. Unlike in LTAG, we do not have the
stronger requirement that at most one terminal, lexicalized node is
allowed. Still, many templates of the GoalGetter system contain
only one (group of) lexical node(s), which may be thought of as
the head of the construction, while the gaps are to be filled by its
arguments. In the other templates, more material is lexicalized for
reasons of efficiency. Typical about the GoalGetter templates is the

Template Sent16b
S =
CP

NP|
nme /\
V|O /\
liet (player /\

/\ aamekenen

DET]|
{playergen) /\
ADT|
{ordinal) doelpunt

E = time «— ExpressTime (currentgoal time)
player — ExpressObiject (currentgoal player, P, nom)
playergen — ExpressObject (currentgoal player, P, gen)
ordinal «— ExpressOrdinal (ordinalnumber)

C = Known (currentmatch.result) A
currentgoal = First (notknown,goallist) A
GoalsScored (currentgoal player) > 1 A
currentgoal.type # owngoal

T = goalscoring

Figure 1: Sample template from the GoalGetter system.

high number of collocations: groups of words with a frozen mean-
ing, such as doelpunt laten aantekenen (have a goal noted) in Tem-
plate Sent16b. The second element of a syntactic template is E: the
slot fillers. Each open slot in the tree S is associated with a call of
some Express function (discussed below), which generates the set
of possible slot fillers for the given gap. The third ingredient is C:
the Boolean condition. A template ¢ is applicable if and only if its
associated condition is true. Two kinds of conditions can be dis-
tinguished: (i) conditions on the knowledge state and (i7) linguistic
conditions. Examples of the latter kind are the conditions that Tem-
plate Sent16b cannot be used to describe an own goal and that the
player of the current goal must have scored more than once. Condi-
tions of the former type state things like * X should not be conveyed
to the user before Y is conveyed’. Thus, Template Sent16b can
only be used if the result of the match currently being described has
been conveyed to the user (i.e., is known) and the current goal is the
first one which has not been conveyed (is not known). These con-
ditions act as a distributive, reactive planner, in the sense that the
conditions are spread across the templates and respond to the cur-
rent stage of the generation process. One advantage of this strategy
is that it carries over immediately to dialogues, in which there can
be no pre-planning. Finally, each template ¢ contains a set of top-
ics T'. As we shall see below, the LGM algorithm uses the topic in-
formation to group sentences together into coherent chunks of text.

I1. The Generation Algorithm Let us now consider an example to
illustrate the working of the LGM generation algorithm, shown in
Figure 2. Its input is formed by the set of topics (all_topics) and the
set of templates (all_templates). The GoalGetter system uses three
topics, namely ‘goalscoring’, ‘cards’ and ‘general’, and approxim-
ately 30 templates, each associated with one or more topics. After
initialization, the algorithm randomly picks a topic from all_topics,

Generate(all_topics, all_templates)

relevant_topics, untried_topics «— all_topics
templates — {}
sentence_uttered, topic _successful, topic_finished — false
current_topic, chosen_template «+— nil
while untried_topics # {}
do current_topic +— PickAny(untried_topics) N\
topic_successful «— false
while ropic_finished = false
do remplates — { t € all_templates | current_topic € Topic (t) A
Cond(r) = true }
while (sentence_uttered = false) A (templates # nil)
do chosen_template — PickAny(templates) A
sentence_uttered «— ApplyTemplate(chosen_template) N\
templates «— (templates \ chosen_template)
endwhile
if sentence_uttered = false
then topic_finished «— true A
if ropic_successful = true
then relevant_topics < (relevant_topics \ current_topic) N\
untried_topics < relevant_topics N\
StartNewParagraph
else untried_topics < (untried_topics \ current_topic)
endif
else topic_successful «— true
endif
sentence_uttered «— false
endwhile
endwhile

Figure 2: The basic generation algorithm of LGM.

say ‘goalscoring’. A set is constructed of all templates which are
associated with this topic and whose conditions are true given the
current knowledge state. In the case of ‘goalscoring’, the set turns
out to be empty: there are no ‘goalscoring’ templates which are ap-
plicable when no information about the match has been conveyed.
This means that the topic has finished without being successful,
and the algorithm starts a new generation round with another topic,
choosing from the two topics which have not yet been tried, ‘gen-
eral’ and ‘cards’. Assume that now ‘general’ is selected. For this
topic, the set of appropriate templates is not empty: there are sev-
eral ‘general’ templates for sentences introducing the soccer match,
which can be used when the knowledge state is still empty. One
of these is randomly selected, and an attempt is made to generate
a sentence from it using the function ApplyTemplate (to be dis-
cussed below). If the attempt fails, other templates are tried until
a sentence has been uttered. If it succeeds, the current topic is re-
garded as successful (a sentence is generated) but unfinished (other
sentences may follow) and the algorithm tries to apply a new tem-
plate within the current topic, taking into account that the know-
ledge state changed when the previous sentence was generated. In
this way, sentences are generated until there are no usable templates
left within the topic. Then the topic is finished and removed from
the set of relevant topics. A paragraph break is realized, and the
generation algorithm starts a new round with a new topic.

Assume that after the ‘general’ topic is finished, the algorithm
once again tries the topic ‘goalscoring’, which has been included

ApplyTemplate(remplate) ‘

all_trees, allowed_trees «— {}

chosen_tree, final_tree, sentence «— nil

all_trees — FillSlots(template)

for each member t; of all_trees do
if Violate_BT(¢;) = false A

Wellformed(UpdateDiscourseModel(t;)) = true

then frees < trees Ut;
endif

if allowed_trees = nil

then return false

else chosen_tree «— PickAny(allowed_trees) A
UpdateContext(chosen_tree) A
final_tree +— AddProsody(chosen_tree) N\
sentence «— Fringe(final_tree) N
Pronounce(sentence) N\
return true

endif

‘ ExpressObiject(r, P, case)

PN, PR, RE — nil

trees — {}

PN — MakeProperName (r)

PR — MakePronoun (7, case)

RE «— MakeReferringExpression (r, P)
trees «— PN U PR U RE

return frees

Figure 3: Some functions used in the generation process.

again in the set of untried topics. Because general information
about the match, including the result, has been conveyed in
the previous paragraph, this time there are several appropriate
templates. Assume that Template Sentl16b is one of them since
the first goal is scored by the player Kluivert, who has scored
more than once during the match, and that it is this template which
happens to be chosen. Then ApplyTemplate, shown in Figure 3,
first calls FillSlots to obtain the set of all possible trees that can
be generated from the template, using all possible combinations
of slot fillers generated by the Express functions associated with
the slots. Figure 3 shows the function ExpressObject, which
generates a set of NP-trees and is used to generate fillers for the
{(player) and (playergen) slots in Template Sent16b. It has as
input the entity to be expressed, a list of ‘preferred attributes’
(used in MakeReferringExpression, see Krahmer and Theune
1998, these proceedings for more details) and the case of the NP
to be generated. The functions called by ExpressObject return
phrases referring to the relevant entity using a proper name, a
pronoun, and a definite description respectively. The outputs (if
any) of these functions are gathered and returned. For the (player)
slot in Sent16b, ExpressObject will return the set containing
the proper name Kluivert and the pronoun Aij (‘he’). No definite
description is returned, since at this point not even including
the values for all the attributes in list P (e.g., team, position,
nationality, etc.) is sufficient to single out Kluivert from the other
players. For (playergen), which requires an expression in genitive
case, ExpressObject returns trees for Kluiverts and zijn (‘his’)
(Dutch does not allow definite description in genitive case). For

the (ordinal) and (time) slots, other Express functions are used,
which we assume return trees for eerste (‘first’) and na vijf minuten
(‘after five minutes’) respectively. The set returned by FillSlots
then contains trees for the following sentences:

Na vijf minuten liet Kluivert Kluiverts eerste doelpunt aantekenen,
Na vijf minuten liet hij Kluiverts eerste doelpunt aantekenen,

Na vijf minuten liet Kluivert zijn eerste doelpunt aantekenen,

Na vijf minuten liet hij zijn eerste doelpunt aantekenen.

(English: After five minutes {Kluivert | he} had {Kluivert's / his}
first goal noted.) For each tree in this set, it is checked (/) whether
it obeys Chomsky’s Binding Theory and (i7) whether it can be used
to update the Discourse Model, which is a record containing all
the objects which have been introduced so-far and the anaphoric
relations (if any) among them. The first test filters out the first two
sentences because the proper name Kluiverts which occupies the
(playergen) slot is not free in this position, thus violating Principle
C of the Binding Theory. The second test is failed by the fourth
tree, since the Discourse Model contains no antecedent for the
pronoun Aij in the (player) slot. The remaining tree is selected
and the context state, including the Discourse Model and the
knowledge state, is updated with the information from this tree.
Then its prosodic properties are computed by AddProsody (see
Theune et al. 1997b for details): first it assigns pitch accents to the
words VIJF, MINUTEN, KLUIVERT, EERSTE and DOELPUNT, each
expressing information which is new to the discourse. The phrase
zijn (referring back to Kluivert) is deaccented due to givenness, the
phrase liet aantekenen is not accented due to structural constraints.
Subsequently, intonational boundaries are added to the resulting
tree: a minor boundary (/) is added after the time expression,
and a major boundary (///) at the end of the sentence, giving the
following result:

(1) Na VIJF MINUTEN / liet KLUIVERT zijn EERSTE DOELPUNT
aantekenen ///

Finally, the prosodically annotated sentence (the fringe of the final
tree) is sent to the SGM to be pronounced.

3. SPEECH GENERATION

I. Phrase Concatenation As said, two methods are available to
convert the prosodically annotated text into a speech signal: phrase
concatenation and speech synthesis. Concatenation of prerecor-
ded words and phrases is very common in information systems
and forms a good combination with template-based language
generation. However, the following aspects have to be kept in
mind. First, most information systems have fixed sentences with
only one or two slots. LGM generates much more flexible output
because it in general has many (syntactic) templates with many
slots, which requires smaller building blocks of the concatenation
method (the words and phrases). This leads to a smaller inventory
size. Moreover, simply making one recording of each relevant
word and phrase does not result in natural output, since variation
in accentuation and phrasing (e.g., deaccentuation of given items)
cannot be dealt with. We solve this by using several prosodic
versions for slot fillers. Depending on the prosodic annotations
in LGM’s output, the correct phrases are selected. There are six
different versions available depending on accentuation [faccent]
and phrasing [phrase-medial, phrase-final, sentence-final]. The

appropriate pitch patterns needed were elicited from the speaker
by recording the words in contexts that closely match the actual
situation. Finally, in order to get a good output quality it is
important that the recordings are sufficiently well controlled. If
this is not the case, differences in loudness, speaking rate and
pitch patterns occur, which are often disguised by inserting longer
pauses between the building blocks, thus hindering the fluency of
the output speech. Given that our building blocks are smaller than
usual (single words make up 75% of the GoalGetter database),
extra care is taken. Speaking rate and intonation are controlled by
recording all building blocks in context. Moreover, after recording,
some effort was put into refining the building blocks, by removing
splutters and spikes in the speech signal and altering the volume
at some points. The advantage of this approach is that the output
sounds very natural and comprehensible. The disadvantage is that
the database construction is very time-consuming. Moreover, the
vocabulary should be of medium size and should remain stable, so
that a minimum of recording sessions is required. More extens-
ive information about this method can be found in Klabbers (1997).

II. Speech Synthesis Synthetic speech is generated via our
diphone synthesizer SPENGI, using a method called phase syn-
thesis (Gigi and Vogten 1997), which combines the advantages of
PSOLA and mixed-excitation LPC to achieve an output quality
that is quite high. In a subjective evaluation under telephone
conditions, it was judged favorably on several aspects, including
general quality, intelligibility and voice pleasantness (Rietveld
et al. 1997). It uses a special strategy to determine the relative
contribution of periodic and noise components of the synthesized
signal, based on a very accurate pitch synchronous analysis of
the amplitude and phase of the harmonic components of the
input signal and a sophisticated determination of the ‘factor of
noisiness’. In the case of D2S, SPENGI is used as a phonetics-
to-speech system. The output of LGM is transformed into a
phonetic transcription by consulting a lookup table. The accent
and phrase boundary markers are copied into this transcription
and serve as direct input to the intonation rules. With SPENGI,
the relevant diphones are concatenated and rules are applied to
control duration and intonation. The intonation, in terms of pitch
movements is assigned per intonation phrase, according to the
theory of ’t Hart, Collier and Cohen (1990). For each pitch pattern
several realizations are possible, chosen at random in order to
achieve a certain amount of variation in the final speech output.
Example (1) contains two intonation phrases, the first, #na VIJF
MINUTEN, contains two accented words before a minor phrase
boundary. In one realization of such a configuration, the first
accented word receives an accent-lending rise (‘1’) and the second
a (pointed) hat pattern (‘1&A’). The phrase boundary is marked
by a continuation rise (‘2’) and a subsequent 400-ms pause. The
second intonation phrase (/iet KLUIVERT zijn EERSTE DOELPUNT
aantekenen /[f) contains three words which need to be accented
before a major boundary. This can be configured by a succession
of two accent-lending rises and an accent-lending fall (‘A’). A final
fall (‘a’) and a 800-ms pause signal the end of the sentence. This
yields the intonation contour depicted in figure 4. The resulting
speech thus sounds quite natural where the intonation is concerned,
as LGM provides a reliable indication of prosody. However, on
other levels, such as the segmental level, the quality of diphone
synthesis can still be improved. One common problem with

400
q00] 1 1&A2M00 1 1 A a [800]
g "V
E o \/ ™ f ™~ ~
= 200 .
5 \
£ R
1004
0 na “vijf "minuten / liet “kluivert zijn “eerste “doelpunt aantekenen ///
0 1 2 3 4

Time (s)

Figure 4: Example intonation contour for sentence (1).

diphone synthesis is the occurrence of audible discontinuities at
diphone boundaries. The investigation of this problem is presented
in Klabbers and Veldhuis (1998, these proceedings).

Acknowledgments Klabbers and Theune did their work within the frame-
work of the Priority Programme Language and Speech Technology (TST),
sponsored by NWO (The Netherlands Organization for Scientific Re-
search), Krahmer was partly supported by the Language Engineer-
ing/Telematics Applications Program, project LE-1 2277 (VODIS).

4. REFERENCES

1. van Deemter, K., Landsbergen, J., Leermakers, R., and Odijk, J., “Gen-
eration of Spoken Monologues by Means of Templates,” Proceedings
of TWLT 8, Enschede, University of Twente, 87-96, 1994,

2. van Deemter, K., and Odijk, J., “Context Modelling and the Generation
of Spoken Discourse,” Speech Communication 21(1/2),101-121, 1997,

3. Gigi, E. and Vogten, L., “A Mixed-excitation Vocoder Based on Ex-
act Analysis of Harmonic Components,” IPO Annual Progress Report,
Eindhoven Volume 32, 105-110, 1997.

4, ’tHart, H., Collier, R., and Cohen, J., A Perceptual Study of Intonation,
Cambridge University Press, Cambridge, 1990.

5. Joshi, A., “An Introduction to Tree Adjoining Grammars,” Mathemat-
ics of Language, A. Manastar-Ramer (ed.), John Benjamins, Amster-
dam, 1987,

6. Klabbers, E., “Speech Output Generation in GoalGetter,” Papers from
the Seventh CLIN Meeting, Eindhoven, 57-68, 1997,

7. Klabbers, E. and Veldhuis, R., “On the Reduction of Concatenation
Artefacts in Diphone Synthesis,” 1998, these proceedings.

8. Krahmer, E., Landsbergen, J., Odijk, J. A Guided Tour Through LGM.
How to Generate Spoken Route Descriptions. IPO Report 1182, 1998.

9. Krahmer, E. and Theune, M., “Context Sensitive Generation of Refer-
ring Expressions,” 1998, these proceedings.

10. Odijk, J., “Generation of Coherent Monologues,” Papers from the Fifth
CLIN Meeting, Enschede, University of Twente, 123-131, 1995,

11. Rietveld, T., et al., “Evaluation of Speech Synthesis Systems for Dutch
in Telecommunication Applications in GSM and PSTN Networks,”
EUROSPEECH’97,Rhodes, Greece, 577-580, 1997.

12. Schabes, Y., Mathematical and Computational Aspects of Lexicalized
Grammars, Ph.D. thesis, University of Pennsylvania, 1990,

13. Theune, M., Klabbers, E., Odijk, J. and de Pijper, J.R., From Data
to Speech: A Generic Approach, IPO Manuscript 1202, 1997a,
http://www.tue.nl/ipo/people/theune/manuscript.ps.Z.

14. Theune, M., Klabbers, E., Odijk, J., and de Pijper, J.R., “Com-
puting Prosodic Properties in a Data-to-Speech System,” Workshop
on Concept-to-Speech Generation Systems, (E)YACL, Madrid, 39-46,
1997b.

