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ABSTRACT

Probably the best current algorithm for generating definite descrip-
tions is the Incremental Algorithm due to Dale and Reiter. If we
want to use this algorithm in a Concept-to-Speech system, however,
we encounter two limitations: (7) the algorithm is insensitive to the
linguistic context and thus always produces the same description
for an object, (ii) the output is a list of properties which uniquely
determine one object from a set of objects: how this list is to be ex-
pressed in spoken natural language is not addressed. We propose
a modification of the Incremental Algorithm based on the idea that
a definite description refers to the most salient element in the cur-
rent context satisfying the descriptive content. We show that the
modified algorithm allows for the context-sensitive generation of
both distinguishing and anaphoric descriptions, while retaining the
attractive properties of Dale and Reiter’s original algorithm.

1. INTRODUCTION

In their interesting 1995 paper, Dale & Reiter present various al-
gorithms they developed alone or in tandem to determine the con-
tent of a distinguishing description, that is: a definite description
which is an accurate characterization of the entity being referred
to, but not of any other object in the current ‘context set’ (taken to
be the set of objects speaker and hearer are currently attending to).
They argue that their Incremental Algorithm is the best one from a
computational point of view (it is fast) as well as from a psycholo-
gical point of view (humans appear to do it in a similar way).

However, if we want to use this algorithm in a Concepi-to-Speech
system, we encounter two problems. First, the algorithm is not
sensitive to the linguistic context. Consider:

(1) a. Al bought the small grey poodle and the blue siamese cat.
b. Unlike the cat, the dog was a bargain.

In (1)a, two distinguishing descriptions are used: the small grey
poodle and the blue siamese cat. If a speaker wants to refer to these
animals again, she typically will not repeat the distinguishing de-
scriptions, but rather use anaphoric, reduced descriptions which, as
it were, are distinguishing given the linguistic context. It would not
be very attractive to define a separate algorithm for such anaphoric
descriptions, which would operate alongside the Incremental Al-
gorithm. Fortunately, this is not necessary; it turns out that with
some modifications we can use the Incremental Algorithm for both
kinds of definite descriptions. The second aspect of the Incremental
Algorithm which prohibits immediate embedding in a Concept-to-
Speech system is that its output is not a natural language expres-
sion, but a list of properties which uniquely selects one object from
a context set. The question how this list of properties is to be ex-

pressed in spoken natural language is not addressed. Still, when de-
veloping a Concept-to-Speech system that is what we are interested
in: we want to know which properties realized in the definite de-
scription should be accented due to the fact that they are new to the
discourse, or since they stand in a contrast relation (as is the case
with the properties dog and cat in example (1)b). This second prob-
lem is solved as a side-effect of embedding the proposed modified
algorithm in LGM, a language and domain independent Concept-
to-Speech system discussed in Klabbers et al. (1998, these pro-
ceedings, see also van Deemter & Odijk 1997, Theune et al. 1997).
The modifications to the Incremental Algorithm which we want to
argue for are based on the idea that definite descriptions refer to
the most salient element satisfying the descriptive content (Lewis
1979: 348-350, formalized in Krahmer 1998). Lewis mentions the
following example (due to McCawley):

(2) The dog got in a fight with another dog.

Lewis notes that this statement can only be true in a domain which
contains at least two dogs, which entails that the dog cannot be a
distinguishing description. According to Lewis, (2) means that the
most salient dog got in a fight with some less salient dog. Lewis
does not mention descriptions which refer to ‘unique’ objects (i.e.,
distinguishing descriptions), but it is readily seen that they can also
be understood in terms of salience: if there is only one object with
the relevant properties, it has to be the most salient one.

2. THE INCREMENTAL ALGORITHM

Let us first discuss the Incremental Algorithm. For the sake of
illustration we use domain DD from Dale & Reiter (1995:258):

dy ( type, chihuahua }, { size, small }, { colour, black }
dy ( type, chihuahua }, { size, large ), { colour, white }
dz { type, siamese cat }, { size, small }, { colour, black }

Following Dale & Reiter (1995:254) we make the following basic
assumptions about domains: (i) each entity in the domain is charac-
terized by a list of attribute value pairs, or properties, (ii) each entity
has at least an attribute type and (iii) there may be a subsumption
hierarchy on certain attributes, generally on ‘type’. For instance:
‘dog’ subsumes ‘chihuahua’, ‘cat’ subsumes ‘siamese cat’ and the
type ‘animal’ in its turn subsumes ‘dog’ and ‘cat’. Additionally, we
assume that the basic level values (Rosch 1978) for ‘chihuahua’ and
‘siamese cat’ are ‘dog’ and ‘cat’ respectively.

The input for the Incremental Algorithm is the object » for which a
distinguishing description is to be constructed, together with a set
C of alternative objects from which r has to be distinguished (‘dis-
tractors’) and, crucially, an ordered set of preferred attributes. This
list contains, in order of preference, the attributes that human speak-



Let Uy, be a sentence uttered in the context of sw;, let topic(Uy) C D and focus(Uy) C D be the sets of entities which are referred to in the topic and
the focus of U}, respectively. Then the new salience function sw;41 is defined as follows:

10 if d € focus(Uy)
9 if d € topic(Uy, ) and d is referred to by a definite NP
swipr(d) = swi(d) if d € topic(Uy, ) and d is referred to by a pronoun

max(sw;(d) — 1,0)
max(sw;(d) — 2, 0)

if d ¢ topic(Uy, ) U focus(Uy, ) and d € topic(Uy), 1 < k
if d ¢ topic(Uy, ) U focus(Uy, ) and d € focus(U;),l < k

Figure 1: Salience Weight assignment based on Hajicovd (1993). Roughly, the topic of sentence U, topic(U/), is what sentence U is about, while the
focus, focus(U), is what the sentence says about its topic. Notice that all information which is required to compute the topic-focus dichotomy (which
information is recoverable from the discourse context and which information is not) is directly available in LGM.

ers and hearers prefer for a particular domain. For instance, we may
assume that a human speaker would first try to describe an animal
by its ‘type’ (is it a dog? is it a cat?), and if that doesn’t help attrib-
utes like ‘colour’ and ‘size’ may be used. It is reasonable to assume
that speakers have a general preference for absolute properties such
as ‘colour’, which are easily observed without taking the other ob-
jects into account, over relative properties such as ‘size’, which are
less easily observed and always require inspection of the distract-
ors. Thus let us assume that the list of preferred attributes for the
example domain is { type, colour, size, ...). Essentially, the Incre-
mental Algorithm goes through this list, and for each attribute it en-
counters, it determines the best value of this attribute (i.e., the one
closest to the basic-level value) and checks whether it rules out one
or more of the remaining distractors. If so, this best value is added
to the set of properties which will be used in the generation of the
distinguishing description. The algorithm stops when the list of dis-
tractors is empty (success) or when the end of the list of preferred
attributes is reached (failure).

Discussion A noteworthy feature is that there is no backtracking
(hence the term ‘incremental’): once a property p has been se-
lected, it will be realised in the final description, even if a prop-
erty which is added later would render the inclusion of p redund-
ant ‘with hindsight’. This aspect is partly responsible for the ef-
ficiency of their algorithm, but Dale & Reiter additionally claim
that this property is ‘psychologically realistic’ since human speak-
ers also often include redundant modifiers in their referring expres-
sions. They write: “For example, in a typical experiment a parti-
cipant is shown a picture containing a white bird, a black cup, and a
white cup and is asked to identify the white bird; in such cases, par-
ticipants generally produce the referring expression the white bird,
even though the simpler form the bird would have been sufficient.
(Dale & Reiter 1995:248). We would like to make two remarks.
First, it seems to us that the Incremental Algorithm produces the de-
scription the bird in this situation: if we make the natural assump-
tion that ‘type’ is the most preferred attribute, the property ‘bird’
will be the first one selected and immediately rules out the black
and the white cup. The second point concerns the experimental
paradigm described here, which goes back to Pechmann (1984). In
these experiments, the described situation is typically preceded by
a situation in which the participant is shown a picture containing an
additional black bird which the subject described as the black bird.
It has been argued that consequently the adjective white in the white
bird is not “unnecessary’, but that it serves to signal a contrast of the
current object with another object in the discourse model/linguistic

context. In other words: this indicates that the creation of the refer-
ring expression is context-sensitive.

3. A MODIFIED ALGORITHM

The underlying idea of the modifications we want to make to the In-
cremental Algorithm is the following: A definite description ‘the N’
is a suitable description of an object d in a state s iff d is the most sa-
lient object with the property expressed by N in state s. We first in-
troduce some notational conventions. Let L be the list of properties
expressed by some N. The value set of L in some domain D (nota-
tion Valp (L)) is the set of objects d € D which have the properties
expressed by L. Thus, Valp, ({(size, small)}) = {d1,ds}. When
omitting the domain subscript and the attribute does not lead to con-
fusion, we just write Val(small). By definition, the value set of the
empty list of properties is the entire domain (Valp ({}) = D). Fol-
lowing common practice, we use | S| to denote the cardinality of a
set S.

How can we model the salience of an entity? For that purpose
we use a function variable sw (‘salience weight’) which repres-
ents a total function mapping each element in the domain to a nat-
ural number from O (not salient) to 10 (maximally salient). A cent-
ral question is how an object increases in salience. Krahmer &
Theune (1998) formalize and compare two methods to assign sa-
lience weights, one based on the hierarchical focusing constraints
of Hajicova (1993), the other on the Centering approach of Grosz et
al. (1995). Our intention is not so much to argue that one of these
approaches is superior to the other. Rather, we want to show that
the modified algorithm can be associated with at least two realistic
ways of determining salience weights. For the sake of illustration,
the one based on Hajicovd (1993) is given in figure 1. For a more
detailed discussion we refer to Krahmer and Theune (1998). Now
we can state that an object r is the most salient object having cer-
tain properties L in a state s (notation: MostSalient(r, L)) if, and
only if, every object in Val( L) different from = has a lower salience
weight than r itself.

Figure 2 contains our proposal for a modified algorithm in pseudo-
code. To ease comparison, we have stuck as closely as possible
to Dale & Reiter (1995:257) in both notation and structure. Be-
low, we illustrate the algorithm in figure 2 with a number of ex-
amples. First, we give a general, somewhat informal overview. The
algorithm is called by MakeReferringExpression (r, P); that is,
we try to generate a definite description for a referent r given some



‘ MakeReferringExpression (r, P) ‘

L—{}
tree < nil

contrast « false
for each member A; of list P do
V « FindBestValue (r, A;, BasicLevelValue(r, A;))
if |Val(L U {{A;, V)})] < [Val(L)| A
contrast «— Contrastive(r, 4;, V) A
(tree «— UpdateTree(tree, V, contrast)) # nil
then L — LU {{A;,V)}
endif
if MostSalient (r, L) = true
then if {type, X) € L for some X
then return [Np[pegthe] tree]
else V' «— BasiclLevelValue(r, type) A
(tree «— UpdateTree(tree, V, false)) # nil A
return [\p[pecthe] tree]
endif
endif
return failure

FindBestValue(r, A, initial-value) ‘

if UserKnows(r, (A, initial-value)) = true

then value — initial-value

else value — nil

endif

if MostSalient(r, {{A, value)}) = false A
(more-specific-value +— MoreSpecificValue(r, A, value)) # nil A
(new-value — FindBestValue (r, A, more-specific-value)) # nil A
|Val({{A, new-value)})| < |Val({{A, value)})|

then value — new-value

endif

return value

MostSalient (r, L)

ifvd e Val(L) : d # r = sw(d) < sw(r)
then return true

else return false

endif

‘ Contrastive(r, A, V) ‘
C «— {d € DR(PrevSUCurS) |d #r A
Parent (BasicLV (d, type)) = Parent (BasicLV (1, type))}
if3d € C : Value(d, A) # V
then return true

else return false
endif

Figure 2: Full sketch of the modified algorithm. In the clause Contrast-
ive (r, A, V'), BasicLevelValue is abbreviated as BasicLV. DR(PrevS U
CurrS) is the set of objects referred to in the current or the previous sen-
tence. A full description of UpdateTree is not given. It differs from the
core algorithm in that it is, to a large extent, domain and language depend-
ent. It attempts to integrate each new property V' in the syntactic tree for
the N constructed so far, In general, the ‘type’ attribute is realised as the
head noun, and further pre- and postmodifiers are added in order of selec-
tion, provided the result is grammatically correct. If contrast is true, the
expression of the property V' is marked by a [+c] feature, which is taken into
account by the AddProsody function of LGM see Klabbers et al. (1998,
these proceedings).

pre-defined list P of preferred attributes. L is a list of the proper-
ties which have been selected for inclusion in the expression gen-
erated and is initialized as the empty list. The variable ¢ree con-
tains the syntactic tree for the N under construction which corres-
ponds with the current list of properties L. Finally, contrast is a
boolean variable which indicates whether the property under con-
sideration is contrastive or not. As in the original version the main
loop iterates through the list P. For each property (attribute value
pair) on this list, the best value V is sought (essentially in the man-
ner described above). Once the best value V is found, it is checked
whether adding this property to the list of already selected proper-
ties ‘shrinks’ the value set (and thus rules out one or more ‘distract-
ors’). If this is so, itis checked whether V' is contrastive. A property
V of r is considered to be contrastive if there is an object referred to
in the current or the previous sentence which is of the same kind as
7 but has a different value for the current attribute.! Subsequently,
the algorithm tries to incorporate the property V' in the N under con-
struction, using the function UpdateTree (iree, V, contrast). If
this does not succeed (the lexical or syntactic restrictions of the gen-
eration module make it impossible to express the property), V' is
rejected. If it does succeed, the current property is added to the list
of selected properties. Then it is checked whether the intended ref-
erent r is the most salient object in the current state of the discourse
which satisfies L. If so, the algorithm succeeds, and the construc-
ted N is combined with the definite determiner ke to produce a full
definite description.

First example: non-anaphoric description Reconsider our ex-
ample domain D;. Suppose we want to generate an expres-
sion for dz in a situation where all objects are equally sali-
ent. We call MakeReferringExpression (dz, P) (with P =
{ type, colour, size, ...)).2 We consider the first property of da,
( type, chihuahua ). The best value for this attribute is ‘dog” (since
Val(chihuahua) = Val(dog) = {d1,d2}).® It is easily seen that
This property has sufficient descriptive content to be included in the
description under construction: [Val{dog)| = 2 < |Val({})| =
3. As a result the function UpdateTree is called which returns
a simple tree consisting of an N with an N° dog. The value of
L is now {( type, dog )}. MostSalient(ds, dog) fails (because
dy 1s also a dog, and both dy and d» are equally salient by as-
sumption.). So we proceed by taking the second property of da,
{ colour, white ). Now we have |Val(white, dog)| < |Val(dog)|;
this property is discriminating and again we call the function Up-
dateTree which updates the current N tree (which only contained
the head noun dog) and adds an AP to this tree for the property
‘white’. Now, MostSalient(ds, {white, dog}) is true: ds is the
only white dog in the domain D; so it is by definition the most
salient one: the resulting tree for the white dog is returned. No-
tice that when we assume that all entities in the domain are always

1 Thus, loosely speaking, the property ‘large’ in the NP the large dog is
contrastive in the context of g small cat but not in the context of g small car.
This treatment of contrast is related to the proposal of Prevost (1996), who
presents an algorithm for deciding which properties should receive contrast-
ive accent in a manner which is somewhat similar to the Incremental Al-
gorithm, See Theune (1997) for some further discussion.

2We assume, for the sake of simplicity, that the linguistic context is
empty, which entails that contrast will remain false in this and the follow-
ing two examples.

3Notice that ‘dog’ is the BasicLevelValue for da with respect to the
attribute ‘type’.



equally salient (thus sw represents the constant function mapping
each d € D to some n), the modified algorithm selects exactly
the same properties as the original Incremental Algorithm. In other
words, our version indeed generalizes the original, which brings us
to the next example.

Second example: anaphoric description (1) Suppose we con-
tinue where the first example ended: we refer to d» in a situ-
ation where d» is more salient than the other objects in the do-
main. Again, we call MakeReferringExpression (ds, P). The
first property encountered is { type, chihuahua ), and the best value
for this attribute is ‘dog’. Again |Val(dog)] < [Val({})|. But
now MostSalient(ds, dog) is true: Val(dog) = {d1,d>} and the
only element in this value set different from d» has a lower salience
weight than ds. So, the result is (a tree for) the dog. Thus: if d is
more salient than all other dogs in the domain, we can subsequently
use the description the dog to refer back to it. Of course, Dale & Re-
iter’s version, being insensitive to differing contexts, would always
express ds using the properties ‘dog’ and ‘white’.

Third example: anaphoric description (2) An anaphoric descrip-
tion generally contains less information than its antecedent. In the
previous example this was reflected by the omission of the prop-
erty ‘white’ when d» was referred to a second time. But it may
also happen that a more general head noun is used for subsequent
reference. To show how our algorithm captures this intuition, let
us add a poodle to the domain, switching to Ds, which is D1 +
{da, ( type, poodle ), { size, small), { colour, white ) }. If we call
MakeReferringExpression (ds, P) in a situation where all ele-
ments of Dy have an equal salience weight, the result will now
not be the white dog, as in the first example, but the white chi-
huahua (as the reader may want to check). If a subsequent call of
MakeReferringExpression (d2, P) occurs, d2 will be more sali-
ent than the other elements of D> . The BasicLevelValue for d»
with attribute ‘type’ is ‘dog’, and since d» is the currently most
salient dog in the domain, this basic value is the best value as
well. Thus, initial reference to d (in domain D) yields the white
chihuahua and subsequent reference, the dog (on the assumption
that the initial reference is not accompanied by references to other
dogs). Dale & Reiter’s algorithm would always express dz (for do-
main D) using the properties ‘white’ and ‘chihuahua’.

Fourth example: contrast Now consider calling the function
MakeReferringExpression (d2, P) (again for domain D5), when
the preceding sentence referred to both dy and dy (e.g., ‘the black
chihuahua and the white chihuahua ...”). Then the first property
added to the description under construction will be ‘chihuahua’.
Now we consider the second property, ‘white’. This property will
also be added to the description, since it distinguishes ds from d; .
Moreover, this property is also contrastive, since di and ds have the
same basic level value for the ‘type’ attribute and different values
for the ‘colour’ attribute. The result is ‘the whire[ +c) chihuahua’,
where the [+c] feature indicates a contrast relation. The LGM func-
tion AddProsody (Klabbers et al. 1998, these proceedings) takes
this feature into account when it assigns pitch accents to a sentence.
How a ‘contrastive intonation’ is best realised is discussed in Krah-
mer & Swerts (1998, these proceedings).

4. CONCLUDING REMARKS

We have discussed a generalization of Dale & Reiter’s Incremental
Algorithm which differs from the original version in that the lin-
guistic context is taken into account, success is defined in terms of
salience and the output is a syntactic NP tree with markers for con-
trastiveness. Klabbers et al. (1998, these proceedings) show how
the modified algorithm can be embedded in LGM and how as a
side-effect of this embedding, the referring expressions are ‘dressed
up’ with prosodic information. As we have seen, our version of the
Incremental Algorithm is a real generalization of the Dale & Reiter
version, of which the attractive features have been retained. First,
our algorithm can be shown to have the same theoretical complex-
ity as Dale & Reiter’s (polynomial), and if anything, requires less
computational effort since the use of context enables a reduction of
the number of attributes mentioned in the final referring expression.
Second, even though we are reluctant to claim psychological real-
ity, the modified algorithm might be argued to be at least as ‘psy-
chologically plausible’ as Dale & Reiter’s original, since it does
more justice to examples like (1), illustrating that the creation of
a referring expression is co-determined by the linguistic context.
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