Toward On-line Learning of Chinese Continuous Speech Recognition System

Rong Zheng, Zuoying Wang

Department of Electronic Engineering, Tsinghua University
Beijing 100084, P.R. China

ABSTRACT

In this paper, we presented an integrated on-line learning
scheme, which combined the state-of-art speaker normalization
and adaptation techniques to improve the performance of our
large vocabulary Chinese continuous speech recognition (CSR)
system. We used VILN to remove inter-speaker variation in
both training and testing stage. To facilitate dynamic
transformation scale determination, we devised a tree-based
transformation method as the key component of our incremental
adaptation. Experiments shows that the combined scheme of
on-line learning (incremental & unsupervised) system, which
gives approximately 22~26% error reduction rate, was proved
to be better than either method when used separately at 18.34%
and 2.7%..

1. INTRODUCTION

In the past two decades, considerable progress has been made in
speech recognition technology. However, for speaker
independent (SI) systems, their recognition accuracy is still
worse than well-trained speaker dependent (SD) system and
automatic speech recognition performance often degrades
rapidly when there is a mismatch between the testing and the
training conditions like outlier speakers. That is why there has
been much interest in adaptation/normalization techniques for
large vocabulary speech recognition recently. Current
approaches to tackle this problem can be roughly categorized as
[2], speaker normalization and speaker adaptation methods.
Because SI systems are trained with a large amount of training
data from many speakers to “remove” inter-speaker variety,
there are two inherent weaknesses with it. (1) the resultant
statistical models have to deal with wide range of variation
caused by inter-speaker variability which will lead to reduced
discriminatory capability and diffused acoustic models. (2) For
outlier speakers who are not included in the training set, the
performance will degrade sharply. Speaker normalization
techniques like vocal tract length normalization [1](VTLN) and
speaker adaptive training (SAT) tend to remove or alleviate
inter-speaker variability thus result in a more “speaker-
independent” model. In speaker adaptation (SA), the pre-
trained speech recognition system is modified toward SD one
by adapting SI codebooks by a few speech provided by the new
speaker. According to the adaptation mode, SA methods can be
(i) batch adaptation, where a limited amount of enrollment data
are collected and are used to train the adaptation (ii)
incremental adaptation, where the system adapts every section
of utterances and uses the adapted model for the next few
utterances and (iii) instantaneous adaptation, where attempts
are made to improve recognition on the same data that are used
to estimate the adaptation transformation. It is clear that

unsupervised incremental adaptation is more attractive in both
feasibility and computational cost. In this paper, we try to
integrate speaker normalization and adaptation techniques in an
incremental learning scheme to improve the performance our
Chinese continuous speech recognition system given by fig. 1.
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This paper is organized as follows. After the introductory part,
VTLN is described in Section II. Motivation and realization of
incremental transformation are presented in great detail in
Sections III. In section IV, experiment results are given. Finally,
this paper is concluded with section V.

2. VOCAL TRACT NORMALIZATION

From a physiological point of view, it is generally agreed that
one of the major sources of inter-speaker variation is the vocal
tract length (VTL). The primary effect of vocal tract length
variation between speakers is a scaling of frequency. The aim of
vocal tract length normalization is to estimate a frequency
scaling factor for each speaker or utterance and then normalize
the speech signal to an average vocal tract length so the
parameterized speech is independent of this type of inter-
speaker variation. The main issues to be addressed in the
implementation of VILN are (I) the estimation of normalization
factor and (ii) how to do the frequency scaling.

The warping factor can be either estimated by searching a
discrete set of possible scalings or using a more direct approach
based on measuring formant frequencies. It has been showed [4]
that formant approach is inferior because estimation of formant
frequency is highly context-dependent and the criterion for
calculating warping factor is not consistent with that of training
stage. To do frequency scaling, there are also many choices. The
scaling can be done in time domain, frequency domain or for
filter-bank based front-end processing be integrated with filter-
bank analysis [1]. The scaling can be linear or nonlinear. In this
paper, we adopted a search approach based on ML criterion and
filter bank based normalization following [4].



3. INCREMENTAL TRANSFORMATION
3.1. Motivation

In [3], Fan Zhang developed a block-wised transformation
scheme. An initial set of SI models is adapted to the new
speaker by transforming the mean parameters of models with a
set of linear transformations. Same transformation is used
across a number of distributions called "block". Assuming the
codebook space is grouped into M blocks via K-mean clustering,
for each block, let A, be the corresponding transformation
matrix and b, be the bias, m =12, .m ; Given the HMM state
s, 1in block m, the normalized codebook { m, } could be

£

obtained through the transformation,

m,=A,m,+b, . 1=1,2,.,. k

m

k, is the number of distributions in block m. Under this
assumption, the probability density function(pdf) of speaker-
adapted(SA) observations will have the form

PO, |Si,m)~N(01 tA,m,, +bm’zi,m)

where O, stands for the observation vectors of HMM state
s, Irom the adaptation data , N( ; ) denotes the Gaussian
densities, A, and b,, m= 12, M can be obtained by
maximizing the a posterior probability of observtion O, as
given in,
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This maximization problem can be solved by E-M algorithm.
The adaptation scheme is performed in batch mode for
supervised adaptation over a fixed amount of data. The
sentences to be adapted and the number of transformation
blocks are determined beforehand by experiment. To extend
this method to incremental adaptation, in which both the
content and amount of adaptation data are not known, several
important changes must be made.

3.2. Tree-based block transformation

The key idea of tree-based block transformation is as the
amount of data for adaptation changes, the scale of
transformation should change accordingly. For example, when
there are only a small amount of data, the transformation should
be very coase, while as more data are available there should
be more blocks accordingly. To facilitate dynamic block
determination, the acoustic models are first arranged into a tree
in which each leaf node corresponds to one Gaussian
distribution. A “cut” [6] denoted a set of nodes whose non-
overlapping leaves comprise the whole model space as showed
in fig. 2.

Let C denotes a cut.,, N, is the ith node of cut C. All the leave
nodes of the sub-tree with root node N, share the same
transformation. Therefore N, here correspond to the “block”
mentioned above while different cut corresponds to different
block number, ie. different model complexity. Cuts are

determined by certain control strategy according to current
amount of adaptation data. For example, in the beginning, when
only a few data are provided, the cut may only contain the root
node. Therefore a global transformation is implemented. As
more data become available, the cut goes down the tree and
thus the transformation follows a coarse-to-fine scheme. The
major concerns of this method are (1) construction of model tree
(2) control strategy.
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Figure 2: Construction of model tree

A. Construction of Model Tree

For convenience, we use binary tree in our approach. The tree is
constructed bottom-to-top by K-mean algorithm. To alleviate
the

constrain imposed by binary tree, we first assign those
distributions which “look™ very similar to each other in one
clique, then construct a binary tree upon those cliques as
illustrated in fig. 2. We choose the absolute value of correlation
coefficient |r | as distance measurement instead of divergence
or Buclidean distance between Gaussian mean. Distance
between Gaussian mean of ith and jth model «; is defined as:

1 N
dij =|f| ZFZ(’T!; _n:l:l,i)T(nlj _n:l:I,j)
s=1

N is the total number of training speakers, /1, is the mean of
jth vector Gaussian distribution of speaker S* SD model. ,,
is the mean vector of ith Gaussian distribution of SI model.

We choose this distance measurement because, for different
models to share the same transform, their trend of variation
across speaker plays more important role than the model’s
spatial distance[5]. The model tree is constructed as follows,

1. Calculate distance d; between any two Gaussian

distribution i and j as defined above.

2. Generate cliques in which all the distance between any two
node is small than threshold th 0

3. Construct binary tree by k-mean algorithm.

The distance of two classes is defined on pairwise basis by
averaging distances between all member of either class.



B. Control Strategy

Control strategy determines the current scale of transformation,
in other word, degree of sharing. A good control strategy must
be both effective and simple. By “effective” we mean that it can
reflect the relationship between data amount and model
complexity. By “simple” we mean it should be easy to
implement. In [6], a control strategy based on information
theory is put forward. Though with sound basis, it is a bit costly
in computation.

In our proposed method, we used a simpler recursive control
strategy based on sufficient stochastic, to be specific, count of
state occurrence. Cut_finding goes in the following steps.

Cut _Finding(k)

0. k = Root Node

1.ifkis a NULL node

2. return

3. ifk is leave node and statistic(k) > Model Complexity
4 append k

5. return

6 if{statistic(LChild(k)) < Model Complexity or
statistic(RChild(k)) < Model Complexity)

7. Cut Finding(LChild(k))

8. Cut Finding(RChild(k))

9. else

10. append k

11. return

C. Implementation of Incremental Transformation

The input speech is first analyzed and represented by a set of
sequential feature vector O {o,,...,0,,...,0,}. O is segmented
using viterbi algorithm with current SI model. Next, sufficient
statistics for base cliques are collected. After cut-finding,
current transformation blocks are determined. Gaussian
components of the same block are modified accordingly by the
block-wised transformation we proposed before [3].
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Figure 3: Implementation of Incremental Adaptation

When a lot of data from the new speaker is processed, to
alleviate the effect of old data and enable the system to
continuously track the variations of current speech, the system
should be updated at certain interval. In figure 3, the data line
represents such “forgetting” mechanism, that is, the old SI
HMM is replaced by the adapted HMM and sufficient statistics
is reset to zero.

4. EXPERIMENT

Experiments were carried out to evaluate the validity and
effectiveness of the proposed methods on our Chinese large
vocabulary continuous speech recognition system (Chinese
LVCSR system). In our system, the speech was first digitized at
16kHz. The sampled speech was then partitioned into 20ms
frames with 10ms-overlap in-between. The feature used was a
vector of 45 component with mel-scaled cepstrals and frame
energy, their first and second order derivatives.

4.1. Baseline

For convenience, we use a scaled down version of our Chinese
CSR system as baseline, which is trained with 10 hours of
continuous speech. It had 856 context-dependent states with
one Gaussian distribution per state. In recognition stage, tests
are carried out in pure acoustic level with no grammatical
constrain in order that we can tell the effect of the proposed
method and of course this is easier to implement compared to
the integrated system. We use character right rate (CRR) as the
performance measurement of our system (In Chinese, one
character corresponds to one syllable). In adaptation test, we
use 50 sentences from each out-set speaker.

Character right rate is defined as follows,

__number of correctly recognized characters

CRR x100%

total number of characters

4.2. Test for vocal tract length normalization

VTLN is implemented at both training and recognition stage.
To get the warping factor of each speaker, we use 3 sentences
from each speaker in unsupervised mode. Table I shows that
VTLN gives a 5.4% of error reduction of character error rate.

Speaker| Baseline(GD) VTLN
System

M25 60.31 61.87
M33 65.22 67.18
M45 65.45 65.84
FOO 63.66 67.24
F28 58.44 60.81
F34 65.39 67.60
Avg. 63.08 65.09

Table 1: Test for VILN

4.3. Result for tree-based transformation

To test the effectiveness of tree-based transformation, the base
system was adapted by 50 random chosen sentences in



supervised and unsupervised mode. In unsupervised mode, final
recognition results are used as label. From table II, we can see
incremental adaptation is superior to static adaptation, which
give approximately 25% reduction of error rate. Table II also
manifested that the unsupervised incremental adaptation
method can still improve the recognition rate, which indicated
that our proposed method is robust to error in label.

4.5. Combined incremental learning

Lastly, we test the effectiveness of our combined scheme. For
comparison, we also list the performance of VTLN and
incremental adaptation when used separately. All the tests are
in unsupervised mode.

Speaker| Baseline VTLN Incremental | Combined
eaker| Baseline | Static Incremental Adap. System (GD) Adaptation | Scheme
Syst Adap.

ystem (GD) dap Sup. Unsup. M25 60.31 .| 6187 68.90 67.84
M25 6031 | o, 69.97 68.90 (86.17) (92.31) (91.90)
(86.17)* : (93.37) (92.31) M33 65.22 6336 69.38 70.23

M33 6522 | o 9 71.50 69.38 (86.26) (89.31) (90.25)
(86.26) ' (91.60) (89.31) M45 65.45 | (559 67.24 67.86

M4S 6545 | oo 67.08 67.24 (88.56) (90.27) (90.97)
(88.56) ' (91.05) (90.27) F00 63.66 | (soq | 7665 77.82

00 63.66 | ¢ o 79.14 76.65 (88.33) (94.71) (94.86)
8833) | (9525) | (94.71) F28 84 | 6039 | 083 69.47

8 5844 | ) 71.50 68.53 (85.50) (89.82) (90.67)
8550 | - (9135 | (89.82) F34 6339 | 6700 | 7243 7481

34 6539 | ., 75.06 7243 (88.30) (91.43) (92.45)
(88.30) ' (93.30) (91.43) Ave. 63.08 | (100 70.52 71.34

63.08 72.38 70.52 (87.19) 0131 | (9185

Avg. (87.19) 72.27 (92.65) (91.31) Table 3: Test for Incremental Learning
Table 2: Test for VILN
5. SUMMARY

* () stands for the CRR of first five candidates

4.4. Asymptotic property of tree-based
transformation

Figure 4 compares the recognition results obtained by tree-
based transformation with those obtained in SI, MAP and
global transformation recognition experiments. In global
transformation, all the distributions share the same
transformation. When adaptation data are small, it can improve
the recognition rate sharply, but the performance satiates
rapidly when more data became available. On the other hand,
MAP has good asymptotic property but relatively slow
adaptation rate. From figure 4, we can see that the proposed
tree-based method has the advantage of both techniques.
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Figure 4. Asymptotic Property of Tree-based
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In this paper, we presented a framework for incremental
adaptation. Two crucial techniques are investigated: VITLN and
incremental transformation. Incremental adaptation is proved to
be a flexible and effective way to remove the difference of an
outlier speaker.
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