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ABSTRACT

An acoustic model is a simplified mathematical representation
of acoustic-phonetic information. The simplifying assumptions
inherent to each model entail that it may only be capable of
capturing a certain aspect of the available information. An
effective combination of different types of model should
therefore permit a combined model that can utilize all the
information captured by the individual models. This paper
reports some preliminary research in combining certain types of
acoustic model for speech recognition. In particular, we
designed and implemented a single HMM framework, which
combines a segment-based modeling technique with the
standard HMM technique. The recognition experiments, based
on a speaker-independent E-set database, have shown that the
combined model has the potential of producing a significantly
higher performance than the individual models considered in
isolation.

1. INTRODUCTION

Combining multiple information sources plays an important
role in high performance speech recognition. In acoustic
modeling, the extraction of different levels of discriminative
information may be achieved in three ways: 1) different types
of acoustic features, 2) different types of acoustic models, and
3) the combination of 1) and 2). The recent research efforts
towards the first method have investigated the calculation and
combination of multi-scale/multi-band acoustic features within
an HMM [1, 2, 6, 8]. In these systems, each feature stream
represents a different characteristic of the input information.
The combination of different feature streams has been
accomplished by either directly creating an augmented feature
vector that consists of all the component streams, or
alternatively merging the likelihoods associated with each
feature stream. Such systems have shown improved robustness
over the traditional single feature stream based systems [1, 6,
8]. In this paper we investigate the second method, i.e.
modeling an acoustic signal across multiple modeling
techniques.

The multi-model approach differs from the multi-feature
approach in that it seeks a combination of different types of
acoustic model, thereby integrating the capabilities of each
individual model for capturing discriminative information. The
proposed research is based on the observation that most current
speech recognition systems are built upon a single modeling
technique, e.g. an HMM or certain type of segment based
model. While these techniques all aim to capture the useful

discriminative spectral information contained in the speech
utterance, they may each only capture a subset of the available
information. For example, while the conventional HMM with
multiple mixture densities is effective in representing the
diversity of the static spectral characteristics, it is ineffective in
capturing dynamic spectral information; likewise, while
segment based models improve upon the standard HMM in
terms of captured dynamic information, the inclusion of a
segmental-level multiple mixture representation may prove
detrimental due to the considerable increase in model
complexity [7]. In other words, it may be assumed that there is
no unique modeling method that encompasses the other
methods in terms of the amount of information being captured.

Should this assumption be true, then it is possible that a union
of different modeling techniques, with each technique
emphasizing a different aspect of the input information, will
result in a model that captures more information than any of the
individual techniques considered in isolation. In order to test
the above hypothesis, we designed and implemented a single
HMM framework, which combines a segment-based modeling
technique with the standard HMM technique. This research is
significant in that it may bring about a significant improvement
in the robustness of current speech recognition systems with
relatively little effort. In addition, it is a useful complement to
the current research in multiple-feature approaches, described
above as method 1. Both approaches need to be advanced, and
ultimately in the future they may be combined (i.e. method 3
above).

2. HMM BASED MULTI-MODEL
TECHNIQUE

Currently the most successful ASR technique is based on
HMMs and their variants. Therefore we focused our research on
the creation of a single HMM framework, within which various
HMM based techniques may be combined. The standard HMM
technique has the advantages that it permits computationally
effective algorithms for training and decoding, and additionally
it offers a straightforward extension to multiple mixture
densities, thereby considerably increasing the power of the
model for representing the diversity of the static spectral
characteristics of speech. However, the standard HMM fails to
adequately model the dynamic spectral characteristics of
speech, due to the frame independence assumption. During the
past decade, various modified models have been proposed to
overcome this problem [7]. Generally, a certain type of
segment-level probability density is used to replace the initial
frame-level density, thereby capturing longer-term dynamic



spectral information. We suggest the combination of the
standard HMM employing a multiple mixture of static densities
with segment-based models, thereby integrating their
capabilities for capturing both the static and dynamic spectral
characteristics of speech.

2.1. A General Structure for the Combined
Models

An HMM framework is employed to accomplish the above
model combination. Specifically, we define the state-dependent
observation densities of the combined model as the product of
the corresponding densities from each of the component
models, i.e.
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where b (x) and b;(x) represent the observation densities of
the m’th component model and the combined model
respectively, for state i. If normalization of (1) is required then
an exponential weighting can be introduced to each component
density to balance their combination. Given (1), the likelihood
function of the combined HMM can be written as
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where o is a time sequence of observations and A is the
parameter set of the combined model.

The model defined by (2) is equivalent to a linear combination
of the component observation likelihood functions in the
logarithmic domain, a method used by some multi-feature
models for combining likelihoods from different feature streams
(e.g. [1, 2, 6]). Of interest is the difference between (2) and
those multi-feature methods. In (2) each b/ (x) represents a
different type of observation density and all the b/ (x)’s are
applied to the same feature stream o; whilst in the multi-feature
methods the same type of density is used for all the b/ (x)’s,
with each b/ (x) accounting for a different type of feature
input. Both methods are common in that their effectiveness
should depend on there being little correlation between the error
patterns that arise from each component likelihood.

The model structure shown in (2) has the advantage that it
permits computationally effective training and decoding, one of
the most attractive characteristics of HMMs. In the following
we show this by implementing (2) using specific examples for
the b (x)’s.

2.2. A Specific Combined Model

We chose to combine the standard HMM employing a multiple
mixture of Gaussian densities with a segment-based model,
namely the inter-frame dependent HMM (IFDHMM). The
IFDHMM embodies a modeling technique that we developed
carlier as an alternative to the existing techniques for
representing segmental level characteristics [3-5]. For the

standard HMM, the K-mixture state-i observation density is
given by

K
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where g (x) is the k’th mixture component Gaussian and wy;
the corresponding mixture weight. The IFDHMM represents the
segment-level characteristics by assuming that each acoustic
frame is dependent upon a segment of preceding or succeeding
frames. Specifically, the state-i observation density of the model
is defined as [5]
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where N defines the length of the conditional segment,
gin{x|xp) 1is a conditional Gaussian density capturing the
correlation between x and the n’th conditional frame x, , and
cin 1s the corresponding weight, satisfying the constraints
¢in 20 and X,c;; =1. The conditional Gaussian density
function g, (x|x,) can be shown to have a parametric form [5]
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where ;, is a L-dimensional vector and H;, and U;, are
both L XL matrices, L being the dimensionality of the frame
vector. Given an observation sequence o, the N conditional
frames associated with each frame o;, i.e. 0;_;(1), ..., 01—z (W),
are defined by a pre-chosen time-lag sequence 7(1), ..., T(N).
Positive 7(n) ’s corresponds to a preceding-frame dependent
system and negative 7(n) ’s corresponds to a succeeding-frame
dependent system. Both models, along with the standard HMM
(3), are combined according to (2) to form the combined model.
The combination of both the preceding and succeeding frame
dependent models has been justified by our previous research in
terms of improved performance [3, 4]. Given the non-stationary
nature of speech, it is reasonable to assume that for a particular
frame, the succeeding (or preceding) frames contain useful
dynamic information that may not be encapsulated in the
preceding (or succeeding) frames.

Based on (2), we can write the likelihood function of the
combined model as

P(0|)~) = zﬂso H As, s,
s t

d ifd ifd
b;’ (Or)bgj (0f|0f—‘r(l)"'OI—T(N))'bgj (0, 0{+T(1)"'OY+T(N))
(6)

Substituting (3) and (4) into (6), after some operator

manipulation, it can be shown that
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in which p(o,s,x,6,v|4) is defined by
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and x, 6 and v represent the T7-tuples (ki,....k7),
(n1,...,ny) and (my,..,mg), respectively, with every k;
defined over (1, ..., K), and every n, and m, defined over (1,
..., N), assuming that the same number of conditional frames
are used to model the preceding and succeeding frame
dependencies. Based on (7), a maximum-likelihood estimate of
the model parameter set A can be obtained by an iterative
maximization of the following auxiliary function
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where Ao is an estimate from the previous iteration. This
maximization can be accomplished using the standard forward-
backward procedure, leading to the computationally effective
model re-estimation algorithm.

3. EXPERIMENTS

The experiments are based on a speaker-independent alphabetic
database (provided by British Telecom Laboratories), from
which the highly confusable E-set (b, c, d, ¢, g, p, t and v) is
extracted for the experiments. The database contains three
repetitions of each word by a total of 104 speakers; the database
is roughly balanced with respect to age and gender. Among the
104 speakers, 52 were designated for training and the other 52
for testing. For each word, then, about 155 utterances are
available for ftraining, and a total of 1219 utterances are
available for testing for all eight words. The speech, sampled at
20 kHz, was divided into 25.6 ms frames with a consecutive
frame overlap of 15 ms. Each frame is passed through a filter
bank of 27 band-pass mel-frequency filters, from which 12
MFCCs plus their first order differential parameters are
extracted. A state-tied model topology, using 15 states for each
word and with the final 9 states tied among all the eight words,
was used throughout the experiments. Furthermore, all models
used diagonal-type covariance matrices.

3.1. Performance of the Individual Models

The results presented in this section test the performance of the
individual models. As described above, three component
modeling techniques are considered, namely a standard HMM
and two IFDHMMs, one IFDHMM with a dependency upon
preceding frames and the other with a dependency upon
succeeding frames.

Table 1 shows the recognition results. For the standard HMM,
the results are presented as a function of the number of
mixtures, and for the IFDHMMs the results are shown as a
function of the number of conditional. For the IFDHMM, the
number of conditional frames being employed is directly
proportional to the length of the segments being accounted for

by the model. The results shown in Table 1 provide good
evidence that an appropriate modeling of the longer-term
dynamic spectra of speech is at least as important as the
representation accuracy of the instantaneous spectra, achieved
through the use of multiple mixtures of static densities.

Parameter Accuracy
Model (K or N) (%)
K=1 86.3
Standard HMM K=3 88.8
K=5 89.6
IFDHMM with N=2 20.8
preceding frame dependency N=3 17
N=4 92.3
IFDHMM with N=2 20.8
succeeding frame dependency N=3 912
N=4 91.6

Table 1: Recognition performances of the standard HMM and
IFDHMMSs. The results are shown as a function of the number of
mixtures (K) or the number of conditional frames (N) used in
each state in the appropriate model.

3.2. Performance of the Combined Models

The combination of the above models has been tested using the
algorithms described in Section 2. Firstly, we examine the
effectiveness of the combination of the two IFDHMMs, one
model employing preceding frame dependencies and the other
succeeding frame dependencies. The results are shown in Table
2, as a function of the number of conditional frames used in
each component model. Compared to Table 1, it can be seen
that the combined model always produces a higher accuracy
than the corresponding component models operated
individually. This phenomenon has already been reported
previously [3, 4]. The non-stationary characteristics of speech
entail that each of the two component IFDHMMs captures some
useful dynamic spectral information that is not contained in the
other. The combined model utilizes the information found in
both component models. This led to the improved performance.

e . Parameter (N) in Accuracy
Model combination each IFDEMM (%)
N=2 92.5
ifd” + ifd”* N=3 93.0
N=4 93.6

Table 2: Recognition performance of the model combining two
IFDHMMSs, one with a dependency upon preceding frames

(ifd" ) and the other with a dependency upon succeeding frames

(ifd*). The results are shown as a function of the number of
conditional frames (N) used in each component model.

Next, we include the standard HMM component into the model
combination. The recognition results are shown in Table 3,
where a fixed number of 4 conditional frames are used in each



IFDHMM component, and the number of mixtures used in the
standard HMM component is varied between 1 and 5.
Comparing Table 3 with Table 1 and Table 2, we observe that
the inclusion of a single-mixture, standard HMM component
brought about little improvement in the performance. This is
due to the poor accuracy of the single-mixture density in
characterizing the static spectral variations. However, as the
number of mixtures increased, the performance improvement
due to the addition of the standard HMM component became
significant. Typically, for the 4-conditional-frame and 5-
mixture case, the error reduction resulting from the inclusion of
the standard HMM component reached 24.7%, 25% and 17.2%
for the (ifd” +std), (ifd* +std) and (ifd” +ifd™ +std) model
combinations respectively. Inevitably, compared to each
individual model, the above combined models have an
increased parameter size, but less so than a corresponding
segmental-level multiple mixture model.

As the database used in this paper has also been used by many
other researchers, a comparison between our results and others
is made possible. To the authors’ knowledge the previous
highest accuracy was that of 94.6%, reported by Valtchev based
on maximum mutual information estimation, applied to an
HMM using full covariance matrices [9]. We achieved a similar
result (94.7%) with our new combined model using a less
complicated training algorithm.

Model combination I:;Eg;e:;r}g\(/[)hl/il Acz;:)a <y

1 922

ifd” +std 3 93.9

5 94.2

1 92.3

ifd* +sd 3 93.7

5 93.7

1 93.2

ifd” + ifd* +std 3 94.0
5 94.7

Table 3: Recognition performance of the model combining the
standard HMM (std) with IFDHMMs using preceding (ifd™)

andfor succeeding (ifd™) frame dependencies. The number of
conditional frames used for the IFDHMMs (N) is fixed at 4 and
the number of mixtures used in the standard HMM (K) is varied
as shown.

4. Conclusions

Most current speech recognition systems are built upon a single
type of model, e.g. an HMM or certain type of segment based
model, and furthermore typically employs only one type of
acoustic feature e.g. MFCCs and their variants. This entails that
the system may not be robust should the modeling assumptions
be violated. Recent research efforts have investigated the use of
multi-scale/multi-band acoustic features for robust speech
recognition. This paper described a multi-model approach
which could be used as an alternative and complement to the
multi-feature approaches. The multi-model approach seeks a

combination of different types of acoustic model, thereby
integrating the capabilities of each individual model for
capturing discriminative information. An example system built
upon the combination of the standard HMM technique with a
segment-based modeling technique was implemented.
Experiments based on the combined model have shown an
significantly improved performance over each of the individual
models considered in isolation. The implemented model,
though specific, may have a more general significance. That is,
improved performance can be obtained by combining different
types of acoustic model.
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