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ABSTRACT

In this paper, we describe a new approach for speaker
independent automatic phoneme alignment. Typical algorithms
for this task use only phoneme-to-frame similarity measures
which are somehow maximised or minimised. In addition to
such similarity measures, we use phoneme duration hypotheses
generated by the speech synthesis system HADIFIX [1]. For
algorithms based on dynamic programming, it is difficult to use
these duration hypotheses, so we create a cost-function
consisting of phoneme-to-frame and segment-to-duration
hypotheses similarity measures and minimise this cost-function
by a Genetic Algorithm. The results show that the accuracy of
automatically determined phoneme boundaries increases. This
accounts especially for speakers not used in the training phase.

1. INTRODUCTION

For our work on the speech synthesis system HADIFIX, we
need a lot of phonemically labelled speech signals. The
construction of one synthesis inventory is based on 2.500
phonemically labelled spoken utterances. Many more
phonemically labelled speech signals are used for research
within the generation of duration hypotheses or of Fy contours.
For this work, an automatic phoneme alignment algorithm with
only a small error rate is necessary. The question of what counts
as a small error rate is very difficult to answer, because speech
is a continuous process and it is normally impossible to create
an exact projection between speech signals and corresponding
phonemes, the latter being discrete units. This fact is even true
for utterances labelled by phonetic experts which is shown by
experiments where experts labelled the same speech material
independently from each other [2]. Usually, the measure of
quality of an automatic alignment algorithm is the distance
between manually and automatically determined phoneme
boundaries. We do the same in this paper. Nevertheless, we
raise the question whether phonetic experts behave differently
when a) they have to label a raw speech signal or b) the speech
signal is already annotated with the results of the automatic
alignment process.

Using only phoneme-to-frame similarity measures for speaker
independent phoneme alignment is a difficult task, because on
the one hand, the used phoneme models should permit speaker
dependent realisations of phonemes. But on the other hand, they
should be highly discriminative between similar sounds, e.g.
sounds like /n/ and /m/1 which are difficult to separate on the

! In this paper we use the SAMPA symbols for phonemes

basis of their spectral representation only. Especially in such
cases the use of phoneme duration hypotheses as additional
constraints for the alignment process solves the problem much
better. The integration of duration hypotheses into a
conventional alignment algorithm based on dynamic
programming is a difficult (if not impossible) task, therefore we
use a Genetic Algorithm (GA) to solve our alignment problem.

2. THE FITNESS-FUNCTION

Many speech recognition and speech alignment algorithms are
based on the minimisation of a cost-function (according to the
terminology of GAs we call this function fitness-function).
Especially algorithms based on Hidden Markov Models
(HMMs) are of this type. Here the cost-function is often a
complex mixture of density functions but only used to describe
phoneme-to-frame similarities. Another interesting property of
frequently used single-skip HMMs is that for each state
transition probabilities are reduced to a constant factor. These
factors weight the emission probabilities of the corresponding
state. It can easily be shown that this factor may be integrated in
the emission probabilities directly.

Due to this observation we use self-organizing maps (SOMs) [3]
in order to model phoneme-to-frame similarities. As in semi-
contintous HMMs, the distance between the parametric
representation of a frame and the matching entry in the SOMs is
used to define the similarity measure. As opposed to semi-
continuous HMMs, we use one SOM (codebook) for each
phoneme class to increase the distances between the parametric
representations of different phonemes stored in the SOMs [4].
Let W, be the SOM for phoneme yand L =1, ..., Ix the
phoneme sequence realised in the speech signal S. The

parametric representation of S is given by P = py, ..., py. Now
we can define a distance matrix A = (Ay).
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We compute that path in the distance matrix A from (1,1) to (K,
M) for which the sum of the matrix entries is minimal out of all
possible paths. This path solves the segmentation problem in a
way similar to the solution given by semi-continuous single-skip
HMMs.

The durations of phonemes depend on many factors such as the
speaker, the surrounding phonemes, the position in a phrase etc.
These influences are considered by HADIFIX during the
computation of the duration hypotheses.



Let H= 7, ..., 1x be the computed duration hypotheses for the
phoneme sequence L. First we have to adapt these duration
values in relation to the length of the speech signal S. This is
done by a linear scaling procedure. The scaled duration
hypotheses?® are called D = d, ...,dx where d; = ¢ 7. Next we
have to consider that the real phoneme duration may still differ
slightly from the scaled hypotheses. This fact is modelled in (2)
by the constant a. (2) uses the ratio between the scaled duration
hypotheses d; and a given segment duration u# to assess the
deviation of the current segmentation durations from the
hypothesised durations. Summing (2) over all phoneme
boundaries contained in the speech signal S shows that there are
many possible segmentations which form a minimum of (2).
The number of these segmentations obviously depends on a.
The different segmentation possibilities account for the fact that
phoneme durations do not necessarily have to be equal for
different speech signals with the same content.
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Now we can define the fitness-function f for a given vector o =
&, ...,0k, containing the segment boundaries for the speech
signal S. The beginnings of the segments pertinent to the
phonemes /;, ..., I are stored in ¢, ...,0%, Whereas og,; contains
the end of the last phoneme /x. The fitness function f is then
computed by summing (1) over all frames and phonemes and by
summing (2) over the deviations between all segments defined
by o and the duration hypotheses.
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The constants A; and XA, are used in experiments to adjust the
importance of both, the term for phoneme-to-frame similarity
and the term of duration hypotheses to segment length
measures.

3. APPLYING GENETIC ALGORITHMS

Genetic Algorithm [5] are based on a set of so-called cells (or
genomes), where each cell represents a possible solution of the
problem to be solved. The set of cells is called a population. In
an iterative process the cells are adapted to the nature which is
coded in the fitness-function. For our problem we say that the
cell ¢ is a better solution of our problem than the cell ¢, if f(c;)
< f(c;). This induces an order on the population. Starting with an
initial population we carry out the recombination and mutation

2 Note that we include the parametric sampling rate into the
constant c.

step. The cells contained in the population before applying the
recombination step are called the parent generation. Since the
recombination step is used to create new cells, we need an
additional rule to keep the size of the population constant. The
rule we use is called survival of the fittest [5]. This rule states
that only a constant number of the best cells are used to form the
next parent generation of the population.

The minimum number of iterations required by the GA for a
good solution depends on the implementation of the
recombination and mutation step, the initial population and how
the problem is coded in the cells.

For our problem, each cell consists of a vector containing the
segment boundaries in temporal order. This means that &g < o,
<... < O, holds, for a vector «.

The initialisation of the population is based on the duration
hypotheses D. A cell containing the segment boundaries
according to D is called a prototype. A new cell is created by
adding small random values to all entries of the prototype. This
is done in random order and must not destroy the temporal order
of the vector represented in the new cell. The 100 cells created
by this procedure form the first parent generation.

To create a child generation, we first apply the recombination
step. Here two cells a3 from the parent generation are selected
by the roulette wheel algorithm [5]. They form a new cell
according to (4).

(e, )= join(a, f,lrand (2,K)) 4)
join(a,ﬁ,i):{al’”‘af1"31'""’:31{“ if o, <p,

Bis B .0, otherwise

Irand produces a random integer between 2 and K. Then we
apply the mutation step (5) for each newly created cell. At this
point, some boundaries are changed by adding a random value,
so that the temporal order is preserved. If the population age ¢
(i.e. the number of generations) increases, the random changes
of the boundaries should be smaller, because the cells should be
well adapted to the nature. Therefore big changes are no longer
plausible. This is simulated by the linear weighting function
w(t) in (5); w(r) decreases monotonically with the population z.
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4. EXPERIMENTS

Experiments were carried out using speech signals of 150 short
German sentences read by one male and two female speakers.
These sentences are taken from the Bonner Prosodische
Datenbank (BPD) [6]. All speech signals in the BPD are
manually labelled.

The transcriptions and the duration hypotheses for the automatic
segmentation were generated using HADIFIX. Typical elision
phenomena of spoken German are included in the transcriptions.



The deviation between manually labelled phoneme boundaries
and automatically determined boundaries is used as a measure
of quality.

The parametric representation of the speech signals is based on
the mel-cepstrum. Therefore, 24 mel-scaled filter bank channels
were used to compute 24 mel-cepstrum coefficients. A new set
of mel-cepstrum coefficients was computed every 2.5 ms.

The size of the parent generation in the GA was 100 cells. Fach
iteration produced 100 new cells. The algorithm ran for a
maximum of 20,000 generations. If the best cell in the
population did not change for 1,000 iterations, the GA was
stopped. After the termination of the iteration, the cell with the
best fitness value was used as the solution to the segmentation
problem.

The weighting function w(z) in (5) was taken as a linear
function with w(0) = 0.9 and w(20,000) = 0.5. The constant a in
(2) was set to 0.3. These values were taken from experimental
results.

The SOMs (1) were created and trained by a procedure
described in [4]. Two sets of SOMs were trained. One set was
trained with speech signals from the BPD (of course different
sentences were used for training and test phase) the other set by
using speech signals form the Phondat-II corpus [7].

5. EXPERIMENTAL RESULTS

One of the essential aims of this work was to reduce the number
of big deviations between manually and automatically labelled
speech signals. In order to show that this aim was reached, we
compared the described algorithm with the algorithm presented
in [4], which is similar to a semi-continuous HMM. The results
of [4] are shown in Table 1 in the column “DTW (Dynamic
Time Warping)”. The column “GAO” in Table 1 shows the
results using the GA without duration constraints (A; = 1, A, =
0). We can see that the results are slightly worse than those in
column “DTW?”. The reason for this deterioration is that a GA
does not necessarily stop at the global minimum of the cost-
function, but the DTW based algorithm does. Still, it is very
interesting to see that almost all results of this GA are close to
the optimal results of the DTW based algorithm.

Most publications on automatic segmentation of speech evaluate
boundary placement separately for different classes of
phonemes. In our opinion, such local error measures cannot be
applied to global optimisation strategies such as the one used
here. Since all phoneme boundaries in an utterance depend on
each other, an error at the beginning of an utterance can still
affect boundaries at the end and vice versa. This circumstance
may influence any sound’s deviation measure, which cannot be
explained on the bases of our algorithm. Therefore, we only
measure global performance.

If we use the duration constraints in addition to the similarity
measure produced by the SOMs (Table 1, Columns “GA1” (A,
=1, Ay = 1) and “GA2” (A, = 1, A, = 2)) the results will be
better than those produced by the DTW based algorithm. Only
the number of boundaries with a deviation smaller than 5 ms
decreases. This is due to the precision of duration hypotheses

SOMs created on | Time [ms] | DTW |GAO|GA1| GA2
<5 48 45 46 44
<10 68 65 68 65
<15 77 74 78 76
<20 82 79 84 83

BPD <25 85 82 88 87
<30 87 84 90 89
<40 90 88 94 93
<50 92 90 95 95
<60 94 92 96 96
<5 40 39 41 41
<10 60 58 63 62
<15 69 67 73 73
<20 75 74 80 80

Phondat-I1 <25 79 77 85 85
<30 82 81 88 88
<40 85 84 92 92
<50 88 87 93 94
<60 91 90 95 95

Table 1: Differences between manual and automatic segmenta-
tion. Indicated is the amount of segment boundaries in percent
whose deviation is smaller than the specific time (included are
all three speakers with about 3000 boundaries).

which correlate to the real durations with ¢ = 0.63. The
hypothesised durations and the actual durations as taken from
the manually labelled utterances deviate 26 ms on the average.

Expecting the algorithm to obtain 100% deviations < 5 ms from
boundaries placed by humans is unrealistic, because there are
also significant differences in boundary placement between
expert labellers [2]. Rather, the algorithm’s results should be
compared to human inter-labeller performance. Such an
evaluation is very time consuming if the human labellers have to
segment the speech signal from scratch. Therefore, we modified
the setup for a pilot evaluation. Two phonetically trained
labellers, GSO and CWI, were instructed to correct the
boundaries very carefully on the basis of oscillographic,
sonagraphic, and auditory information. As to be expected, the
majority of the automatic boundaries were accepted as they had
been set by the algorithm. 70% of all labels did not have to be
corrected at all (Table 2, row < 5 ms).

6. CONCLUSIONS

Incorporating hypotheses about segment duration significantly
increases the quality of automatically placed segment
boundaries, especially when segmenting data from speakers
which were not used for training the phoneme models (Table 1).

The price we have to pay for this is an increase in computing
time and space. But this increase can be tolerated for the
automatic segmentation of speech (ASS), because it is rarely
executed in real time. In contrast to ASS techniques based on
Dynamic Programming, the approach presented here can be



Time [ms] CWI GSO
<5 71 63
<10 80 80
<15 86 86
<20 89 90
<25 91 92
<30 93 93
<40 95 95
<50 96 96
<60 97 96

Table 2: Differences between automatic and manually cor-
rected segmentation. Indicated is the amount of segment
boundaries in percent whose deviation is smaller than the
specific time. The correction was based on the automatically
placed boundaries with A; =1, A, = 1.

parallelised effectively. Therefore it can profit from commonly
used multiprocessing architectures.

Comparing the deviations between human labellers and the
algorithm to human inter-labeller deviations [2], we find that the
algorithm is already quite reliable. But while the upper
boundary of human inter-labeller deviations rarely exceeds 40
ms, there are a few cases where our algorithm produces larger
differences. Future work will therefore aim at reducing large
deviations (20 ms and more) even further, since such deviations
are extremely rare between human labellers.

Our algorithm is very flexible. Since the optimisation step has
information about possible segment boundaries, we can easily
use many different criteria for boundary placement. In future
work, the relation between inter- and intra-class distances will
be integrated into the cost function. We are also considering to
use further prosodic features such as accentuation.

The probability of a wrong boundary placement increases with
the length of the utterance. The space requirements of our
algorithm also increase quadratically with the number of
parameter vectors generated from the signal. Therefore, it is
necessary to subdivide the signal into smaller units, such as
voiced and unvoiced segments. Experiments with such units are
currently being conducted. If successful, the present algorithm
will a universally applicable, high-performance method for
ASS.

Every method for ASS is adapted to certain segmentation
criteria based on the training material. This makes a comparison
of different methods difficult, if not impossible. It would be
highly desirable to establish a set of benchmark data for the
ASS task and to devise a reasonable measure of performance.
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