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ABSTRACT

In this paper we describe a new testbed for developing
speech recognition algorithms - a VoiceMail transcription
task, analogous to other tasks such as the Switchboard,
CallHome, and the Hub 4 tasks, which are currently used
by speech recognition researchers. We describe the collec-
tion and use of a new VoiceMail database (that is available
to the research community through the LDC), and also
describe some algorithmic techniques that were devised
based on this data, and the initial results of transcription
performance on this task.

1. INTRODUCTION

In this paper we describe a new testbed for developing
speech recognition algorithms - a VoiceMail transcription
task, analogous to other tasks such as the Switchboard,
CallHome [1] and the Hub 4 tasks [2] which are currently
used by speech recognition researchers. Voicemail repre-
sents a very large volume of real-world speech data that is
not well represented in any of the currently existing data-
bases. Consequently there is a need for a Voicemail data-
base in order to improve transcription performance on a
voicemail transcription task, and also to establish a new
test bed for speech recognition algorithms.

2. DATA COLLECTION

Next, we will briefly describe the characteristics of this
data (for details of the data collection scheme see [3]), and
experimental results that establish a baseline for speech
recognition performance on this database this data is
available to the research community through the
Linguistic Data Consortium (www.ldc.upenn.edu).

e The data represents extremely spontaneous speech.

e The data contains both long-distance and local calls.

¢ The average length of a voicemail message is 31 seconds,
however, the peak of the histogram of voicemail durations

occurs at 18 seconds.

e The average rate of the speech is approximately 190
words per minute.

e The topics covered in the collected data ranged from
personal messages to messages with technical or business-

related content.

e The database was not quite gender balanced, with the

percentage of male speakers being 38 %.

3. SYSTEM OVERVIEW

We will first briefly describe the IBM large-vocabulary
speech recognition system. Essential aspects of the system
used in the experiments here have been described earlier
[4]; however, we will summarize the main features here :

The acoustic features used are 13-dimensional cepstra
and their first and second differences, and a feature vector
is extracted every 10 msec from the 8KHz sampled voice-
mail data. Words are represented as sequences of phones.
Each phone is further divided into 3 sub-phonetic units
which correspond roughly to the beginning, middle, and
end of each phone. The system uses context-dependent
HMM acoustic models for these sub-phonetic units. For
each sub-phonetic unit a decision tree is constructed from
the training data [4]. Each leaf of the tree corresponds to
a different set of contexts. The acoustic observations that
characterize the training data at each leaf are modeled as
a mixture of gaussian pdf’s, with diagonal covariance ma-
trices. The systems used in this paper had approximately
2700 leaves, and anywhere from 17000 to 170000 gaussians.
The system also uses an envelope-search algorithm [4] to
hypothesize a sequence of words corresponding to the ut-
terance. A simple word N-gram (bigram or trigram) model
is used to compute the language model probabilities.

4. ACOUSTIC MODELS

4.1. Clean-up of transcriptions

The initial transcriptions that we started off with for the
20 hours of voicemail data were not very clean, and had
a fair number of transcription errors. As it would have
been impractical to verify all these transcriptions manu-
ally, we devised an automatic scheme to identify possible
transcription errors. This tagged around 1 % of the data,
and we then corrected these transcriptions manually. Very
briefly, the main idea used in the tagging scheme was to
viterbi align the speech data against the (possibly incor-
rect) transcription, and then identify regions where the
log-likelihood assigned to a phone by the alignment process
was particularly low. For more details see [3]. This process
identified script errors as well as baseform errors, which
were then corrected manually.



4.2. Compound words

An additional observation arising from the tagged
segments of the acoustic data was that crossword co-
articulation was very common in this data because of the
casual nature of the speech and the fast speaking rate.
For instance, the phrase ’going to take’ would often be
pronounced as ’gontake = G OW N T EY KD’. For our
initial experiments, we chose to model such effects by con-
structing compound words [8, 9]. We selected these com-
pound words based on the tagged segments of the acoustic
training data. Some examples of the compound words and
their pronunciations is given in Table I

Table 1
CAN —-WEFE K AX W IY
FOR-YOU F AXY UW
GIVE-ME GIH M IY
GOOD — MORNING G UH M AA N IX N
IT-WAS IX W AX Z
SO —-1IF S OW F
TO -YOU CHY UW
TRYING —-TO T RAY N AX
WANT —TO W AA N AX
YOU — CAN Y UW N

The use of these compound words serves a dual pur-
pose. Firstly, they enable the modelling of crossword co-
articulation effects. Secondly, it is generally the case that
decoding errors are more common in shorter words, hence,
as the compound words have relatively long baseforms,
there are fewer errors in the compound words. We de-
cided to extend the second piece of reasoning above and
apply it to model commonly occurring phrases in the voice-
mail data. Hence, we constructed compound words of the
form ’give-me-a-call’, ’thank-you’, ’thanks-a-lot’, 'when-
you-get-a-chance’ etc.

4.3. Phonological rules

In order to model co-articulation effects in words other
than compound words, we used some of the phonological
rules described in [5]. Examples of such co-articulation
effects are plosive deletion (deletion of word final TD in
the word sequence ’excellent point’), palatization (did-you
being pronounced as 'D IH JH UW”), etc. Such effects can
be accounted for using linguistic rules [5], that specify the
conditions under which the boundary phones in a word
may be deleted or replaced by other phones.

Some of the rules that we implemented are listed below
(Pn_l and P, denote the last two phones of the first word,
and N, denotes the first phone of the next word).

1. Geminate Deletion: If P, = Consonant and N, =
Same consonant then delete P, Example: this-street

DHIHSTRIY TD

2. Palatization: If P, =D and N; = Y then replace P,
with JH and delete N1 Example: did-you D IH JH
UW and what-you W AH CH UW

3. Plosive Deletion: If P,y = N, P, = plosive and N,
= plosive the delete P, Example: went-down W EH
NDAWN

4.4. Model Complexity Adaptation

As mentioned earlier, we model leaves in our system with
mixtures of gaussians. In general, ad-hoc rules are used to
determine the number of mixture components that will be
used to model a particular leaf - for example, the number
of components is made proportional to the amount of data,
subject to a maximum number. This choice of the num-
ber of components may not necessarily provide the best
classification performance - consequently, we introduced
a discriminant measure to choose the number of mixture
components in a more optimal manner. The details of this
algorithm are given elsewhere [10], so we will only summa-
rize it briefly here.

The essence of the algorithm is to start with a small
baseline system, and evaluate how well the gaussian mix-
ture model for a leaf models the data for that leaf. This
is done by computing the posterior probability of correct
classification of the data for that leaf. If this probability is
low, this implies that the model for the leaf does not match
the data for the leaf very well; hence, the resolution of the
model for the leaf is increased by adding more components
to its model.

In our implementation, we start with two systems (say
S1 and S2), where S2 models each leaf with more gaussians
than S1. Subsequently, we find those leaves that are not
adequately modelled by S1 according to our discriminant
criterion, and replace the model for that leaf in S1 with
the corresponding model from S2.

4.5. Tree growing experiments

As mentioned earlier, the voicemail database comprises
of messages from a variety of acoustic environments. Con-
sequently, constructing the decision trees (to identify pho-
netic context dependence of the HMM states) from this
data could result in the tree trying to isolate the environ-
ment rather than acoustically dissimilar phonetic pronun-
ciations. Further the amount of available acoustic data is
only 20 hours. Consequently, we experimented with con-
structing the decision tree from (i) bandlimited WSJ data
(60 hours)(ii) bandlimited Hub 4 data (from the F0 and F1
conditions) (40 hours) and (iii) from the Voicemail data (20
hours). Subsequently, the gaussians modelling the leaves
of the tree were trained using the Voicemail acoustic data.
Results indicated that the use of the bandlimited WSJ
data for constructing the trees gave the best performance.

4.6. Feature extraction experiments

Our initial experiments used 13-dimensional Mel cepstra
and their first and second derivatives, but we also experi-
mented with using alternative features such as PLP cepstra
[6] and linear discriminant features. We are also curren-
tky experimenting with the use of smoothed estimates for
the Mel cepstra [7], the rationale being that the smoothing
would lead to a reduction in the variance of the estimated
feature vectors, thus leading to "tighter” models.

5. EXPERIMENTAL RESULTS

Our first set of experiments were conducted when we
had only 10 hours of training data available, and several
of these experiments were repeated on 20 hours of train-
ing data. We will present experimental results for both



these training sets (we will refer to them as Vmaill0 and
Vmail20), as the difference in performance gives an indica-
tion of the effect of increasing the amount of training data
on different components of the recognizer (acoustic model,
language models, etc.).

5.1. Test data

The test data was 43 voicemail messages (picked at ran-
dom from the collected data, and not included in the train-
ing set). The size of the Vmaill0 vocabulary was 6K words,
and the out-of-vocabulary (o.0.v.) rate of the test data
with respect to this vocabulary was 4.6 %. The size of the
Vmail20 vocabulary was 10K words, and the oov rate of
the test data with respect to this vocabulary was 3.5 %.
The perplexity of the test set was around 120.

5.2. Results

We conducted a number of incremental experiments to
observe the effect of adding additional training data to
different components of the recognizer. The word error
rates are given in Table VI (any reference to row numbers
in the remainder of this section should be interpreted as

row of Table VI).

(1) The initial system we started with was trained on the
Vmaill0 database and used a bigram LM. This gave an
error rate of 49.75 %. Re-estimated the parameters of this
acoustic model using the Vmail20 datbase (LM was still
a bigram estimated from the Vmaill0 data) dropped the
error rate to 46.22 % (row 1).

(2) Subsequently, we re-estimated the bigram LM using
the Vmail20 database, and decoded the test data using
the same acoustic model as in row 1. This dropped the
error rate to 45.12 % (row 2).

(3) Subsequently, we estimated a trigram LM using the
Vmail20 database, and used this with the same acoustic
model of row 1. This dropped the error rate to 42.7 %
(row 3).

(4) Next we used a weighted mixture of the Vmail trigram
LM of row 3, and a trigram built off the Switchboard data
(in the proportion 0.3 Swb LM probability 4+ 0.7 Vmail20
LM probability). The error rate corresponding to this con-
dition was 42.95 % (row 4).

(5) Next, we estimated a MCA model putting together a
system (S1) with 83.5K gaussians, and a system (S2) with
175K gaussians. The resulting MCA model had 78K gaus-
sians. Using the mixture trigram LM of row 4, and the
MCA model dropped the error rate to 41.94 % (further
details are given in the next section).

(6) Next, we used VTL [11] to normalize the spectra of the
training speakers on a per-message basis and re-estimated
the acoustic model of (5) with the normalized training
data. Further, the normalization was also applied to the
test speakers on a per-message basis. This dropped the
error rate to 40.52 % (row 6).

(7) Next, we used the MLLR speaker adaptation technique
[12] to do unsupervised adaptation of the acoustic models
of (6) on a per-message basis. This further dropped the
error rate to 38.92 % (row 7).

(8) Finally, we applied the phonological rules of Sec-
tion. 4.3 in the decoding process, and used them with the
models of (7). This brought the error rate down to 38.18
% (zow 8).

Table IT (word error rate)

(1) Bigram LM - Vmaill0 46.22
(2) Bigram LM - Vmail20 45.12
(3) Trigram LM - Vmail20 42.70
(4) Trigram LM - Vmail20 + Swb | 42.95
(5) MCA model 41.94
(6) Adaptation (VTL) 40.52
(7) Adaptation (VIL+MLLR) 38.92
(8) Phonological rules 38.18

Model Complexity Adaptation We now present some
experimental results on model complexity adapation
(MCA) (see Section. 4.4) that indicate that the new
method of determining the complexity of the model yields
consistent gains over standard methods. We constructed
five models using the standard ad-hoc method of allocat-
ing a fixed number of gaussians for the each leaf. These
models respectively had a maximum of 7, 12, 35, 60, and
150 gaussians per mixture (gpm). Subsequently, we used
MCA to construct models that replace the gaussian mix-
tures for some leaves in the 7 gpm model with gaussian
mixtures from the 35 gpm model. This model will be re-
ferred to as 7x35 in the following table (Table III). Table
IIT tabulates the error rates and the size of several models,
constructed by conventional means, and using MCA.

Table IIT
| | # gaussians | Word error rate |
Conventional models

7 gpm 16.5K 47.53
12 gpm 25.8K 45.07
35 gpm 69.5K 43.25
60 gpm 89.5K 43.86
150 gpm 128.5K 44.16
MCA models

7x35 25K 45.72
12x35 33K 43.2
35x150 78.2K 42.2
60x150 96.5K 42.9

The error rate as a function of the number of gaussians in
the model is shown plotted in Fig. 1, and it can be seen
that the MCA models consistently outperform the conven-
tional models by around 5% (relative). Also, note that due
to the limited amount of training data, the error rate starts
increasing as the number of parameters increases beyond a
certain point. Additional details of these experiments are
given in [13].

Results on tree-growing and feature-space related experiments

For these experiments, the phonology used was a little dif-
ferent from that used in the experiments described in Ta-
bles IT and III - We also added three additional phones to
explicitly model fillers, UH, UM, and ER. In the first set of
experiments, we used 13-dimensional Mel cepstra and their
first two derivatives as the feature vectors, and constructed
the decision trees using different data sets (as tabulated in
Table IV). Subsequently, once the trees had been grown,
the parameters of the gaussians modelling the leaves of the
tree were estimated from the Voicemail acoustic training
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data. The results are summarized in Table IV.

Table IV
Data type Amount of data | Word error rate
Bandlted WSJ 60 hours 41.49
Bandlted Hub4 40 hours 42.75
Voicemail 20 hours 44.66

For the feature space related experiments, we used the
decision tree grown from bandlimited WSJ data and sim-
ply re-estimated the gaussian mixtures at its leaves in dif-
ferent feature spaces. The feature spaces we experimented
with are (1) 13-dimentional Mel cepstra and their first 2 de-
rivatives (ii) 13-dimensional PLP cepstra and their first 2
derivatives (iii) we computed the leading 39 linear discrim-
inants of the 39-dimensional feature space in (i), with the
LDA being designed to separate out the leaves of the deci-
sion tree as classes (iv) finally, we experimented with using
a smoothed estimate of the Mel cepstra [7]. In (i) the Mel
cepstra are computed every 10 ms (using a 32ms window
of speech); in the smoothed cepstra, we compute the Mel
cepstra every 2 ms (using a 25ms window of speech), and
average five adjacent cepstral vectors to extract one every
10 ms. The word error rate obtained with these different
feature spaces is tabulated in Table V.

Table V
Feature space | Word error rate (%)
Mel Cepstra 41.49
PLP Cepstra 41.44
Mel+LDA 43.76
Smoothed Mel 40.68
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