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ABSTRACT

In this study a data-based approach to intonation modeling is pre-
sented. The model incorporates knowledge from intonation theo-
ries like the expected types of F; movements and syllable
anchoring. The knowledge is integrated into the model using an
appropriate approximation function for F; parametrization. The
F( parameters that result from the parametrization are predicted
from a set of features using neural nets. The quality of the gener-
ated contours is assessed by means of numerical measures and
perception tests. They show that the basic hypotheses about into-
nation description and modeling are in principle correct and that
they have the potential to be successfully applied to speech syn-
thesis. We argue for a clear interface with a linguistic description
(using pitch-accent and boundary labels as input) and discourse
structure (using pitch-range normalized F, parameters), even
though current text-to-speech systems usually still do not have the
capability to predict most of the appropriate information.

1. INTRODUCTION

Every model trained on data will improve when the right assump-
tions about the underlying phenomena can be made. For the mod-
eling of intonation we are therefore examining intonation theories
to use their main findings as a priori knowledge for our approach.
Since the data used here has been analyzed according to the Tone-
Sequence-Model we will start by summing up the main properties
of this established theoretical background.

Originally introduced by Pierrehumbert the Tone-Sequence-
Model (TSM) has been adapted to many other languages for the
description of intonation [1]. The basic categories of the TSM are
pitch accents and phrasal tones. All of them are based on the two
atoms H and L, which are phonetically realized as high or low tar-
gets in the speaker’s pitch range. The targets are related to the
stress bearing units of the utterance (i.e. syllables in the case of
germanic languages). In Pierrehumbert’s notation the * denotes
the accented syllable. In an L*+H accent, for example, a low tar-
get on the accented syllable is followed by a rise up towards a
high target, which is usually reached within the next syllable.

In this study we are using the TSM adaptation of Féry, who mod-
ified the original tone inventory in order to capture the particular
aspects of German intonation [2]. She found that German intona-
tion can be described by 5 pitch accents and 2 boundary tones.
The main pitch accents are an F rise (L*+H), fall (H*+L) and
rise-fall (L*+HL). Beside these common pitch accents she ob-
served rare occurrences of an early peak and the so-called ’styl-
ized contour’ which can be found in vocatives. The intonation

characteristics of at the boundaries can be described by a default
intermediate boundary, a default phrase boundary (both have no
explicit notation in Féry‘s work) and a high boundary tone (H%).
The default boundaries essentially extend the last tone of the
phrase-final pitch accent to the end of the phrase: A default
boundary after L*+H is therefore interpreted as high and a default
boundary after H*+L as low. The additional high boundary tone
H% is necessary to explain a final rise after a falling accent.

While there are commonly used models for the description of
pitch movements, no widely accepted model exists for the pitch
range. Usually the pitch range of an utterance is defined by the up-
per and lower boundaries of the F;, contour. Problems occur if an
accent is subject to expressive raising which places the high target
of the accent beyond the pitch range of the utterance [3]. Classi-
fying expressive raising is very subjective, which makes it hard to
determine the pitch range automatically. As no rules are known
we will apply a statistical method to determine the pitch range of
an utterance (see section 3.3).

While the Fy movements represented by the TSM elements are in
accordance with local semantic functions like focus and topic [3],
the pitch range of the F; contour is related to the higher level
structure of discourse. Even though it is very hard to derive se-
mantic and higher order linguistic analysis from a written text it
is important to take these influences into consideration by provid-
ing an appropriate interface with the intonation model. We can
expect that semantic information will be at least partially avail-
able in the future. This is especially true for speech-based auto-
matic translation and dialog systems where the modules prior to
synthesis operate on the basis of semantic information. A clear
interface with this level of linguistic description will facilitate the
future incorporation of speech synthesis into these systems.

2. DATABASE DESCRIPTION

The corpus used for this study consists of 72 news stories record-
ed from the digital satellite radio (DSR). They were read by a
male professional news reader. The total length of the corpus is 48
minutes.

Word, syllable and phoneme transcriptions of the corpus were
added using methods of forced alignment [4]. The manual proso-
dic annotation is based on the tone sequence model for German
described above. It has been modified in some points to meet the
requirements of labelling (e.g. an explicit notation of the default
boundaries has been added). The development of the used label
system is part of the GtoBI (German Tone and Break Indices)
project [5].
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Figure 1: The parameters of the approximation function:
p (movement type), s (steepness), d (alignment), / (base level),
h (amplitude).

3. METHODS

The data-based intonation model presented here relies on a set of
parameters which is automatically extracted from the F, contour.
The parametrization is based on a specially designed function
which is approximated to the F, curve. The free parameters of the
function are found during the approximation. They describe the
movement of the Fj curve. In a synthesis application these param-
eters would be predicted and the F, curve is constructed on the ba-
sis of the underlying function.

3.1. Design of the approximation function

We use a prior knowledge of the expected F, movements to de-
sign the approximation function. It is based on the general find-
ings of the Tone-Sequence Model. Hence, the function should be
able to model Fy movements that are either rising or falling or of
the rising-falling type. Since syllables are the stress bearing units
we want the approximation to be syllable based.

The approximation function is a 4th degree polynomial function
that is extended by constant lines in its turning points (cf. Fig. 1).
It is defined within the interval -1 < p < 1. During the parametri-
zation process the accented syllable and the post-accent syllable
are normalized and mapped onto the intervals [-1;0] and [0;1] re-
spectively. This normalization reflects the syllable-based anchor-
ing of the targets in the TSM. The approximation function can be
shaped by a set of 5 parameters. They have been chosen to allow
a meaningful interpretation of the underlying movement.

The function moves within the base level / and the maximum /+A.
The parameter /, therefore, symbolizes the potential place of the
L target, and 4 represents the amplitude of the movement.

The parameter p represents the basic shape of the movement. It
follows the principles of the #ilt parameter established in [6]: A
value of p=1 represents a pure rise, p=-1 results in a pure fall and
for p=0 a rising-falling contour is modeled. But the parameter p is
not restricted to these discrete values. For -1 < p < 1 any move-
ment that consists of a rising part followed by a falling part can be
modeled (cf. Fig. 2). A falling-rising shape is not part of the
movements accepted within the TSM and can therefore not be
modeled with this function.

The parameter d indicates the alignment of the peak point within
the two-syllable window. And, finally, the parameter s describes
the time within which the movement rises or falls between the
levels of I to [+h.

3.2. Approximation process

For the process of approximation the F, contours were median-
smoothed, interpolated through unvoiced periods and segmented
in two-syllable windows overlapping by one syllable. The time
scale within this window was normalized according to the sylla-
bles’ lengths. We applied the Nelder-Meade simplex-search
method for the approximation. Different sets of starting values
were applied to find the best approximation. When the algorithm
did not converge we restricted the approximation on the first half
of the window (accented syllable). This situation occurs e.g. when
2 accents follow each other very closely, resulting in Fy move-
ments that cannot be described by the approximation function.

We parametrized the complete news corpus. To assess the quality
of the parametric description we reconstructed the F; contours
based on the five parameters. The overlapping parts of the pre-
dicted movements were averaged, the resulting contours
smoothed with a low pass filter of 33 Hz. As a numerical quality
measure we calculated the root mean squared error (RMSE) and
the correlation between the resulting contours and their original
counterparts. We achieved a RMSE of 6.8Hz and a correlation of
0.94. These findings show a very close approximation of the F,
contours by the model. Visual comparison of the F;, contours and
informal listening tests underlined the numerical results, so that
we did not carry out any further (e.g. perceptual) evaluations.

3.3. Pitch range estimation

Usually, two lines represent the upper and lower boundary of the
pitch range. We also intend to follow this approach. The upper
boundary of the pitch range is defined by the highest peak in the
utterance [3]. Pitch range estimation takes place after the param-
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Figure 2: The parametrization function for different values of the
shape parameter p, ranging from a pure rise to a pure fall
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Figure 3: Example utterance: Speech signal, original F contour, F; contour generated from data using the model presented
in this paper, F; contour generated by rules, prosodic and word transcription.

etrization of the F( contours. For this reason we look at all F, pa-
rametrizations of the pitch accents within an intonation phrase.
The maximum of all values, /+A, serves as the pitch range’s upper
boundary. The effect of expressive rising is taken into account by
excluding outliers from this statistics. The same principle is ap-
plied to all / parameters, resulting in an estimation of the pitch
range’s lower boundary.

3.4. Prediction of F contours

We used bidirectional recurrent neural nets (BRNN) to predict the
parameters from a set of features [7]. Recurrent nets are superior
to multi-layer perceptrons (MLP) when dealing with time corre-
lated data. Time dependencies are captured by the state neuron
layer which is fully connected to the input neurons and contains a
feed-back loop.

The parametric Fy description of each syllable in the utterance
makes up the output vectors of the neural net. To establish an in-
terface with a separate pitch range model we normalized the pa-
rameters / (base level) and /4 (amplitude) with the pitch range
values of the respective utterance. Therefore the F; contours will
be predicted in a normalized pitch range and are only later trans-
lated into an actual pitch contour using a specific pitch range val-
ue.

For every syllable a set of features was extracted: type of the ac-
cent and boundary (GToBI label) determined for a window of 5
syllables around the syllable in question. Other features include
the distance to the preceding and following accent, the length of
the intonation phrase, the position within the intonation phrase
and the length of 3 specific elements defined within the syllable:
the stable, pre-stable and post-stable part as motivated by the
work on pitch perception by House [8].

We trained the BRNN on 60 of the 72 news stories. Both input
and output data had been normalized to a mean of zero and a vari-
ance of one. The best topology could be found for 6 state neurons
in forward direction and 4 neurons in backward direction.

From the predicted parameters we reconstructed the F,, contours
of the 12 news stories that make up the test corpus (see Fig. 3).
The Fy curve within syllables without pitch accent or boundary
was not reconstructed from the predicted F,, parameters. Instead
we only used a single point (the mean of the predicted movement)
in these syllables. We did so, because only syllables with pitch ac-
cents or boundaries exhibit Fy movements that can be consistently
modeled by our function. Unmarked syllables, however, are char-
acterized by global movements which are basically an interpola-
tion between the pitch accents .

The numerical evaluation of the predicted F,, contours in the test
set resulted in an RMSE of 16.0 Hz and a correlation of 0.64.

4. PERCEPTUAL EVALUATION

From the 12 news stories in the test set we extracted 7 intonation
phrases for the perception experiment. The stimuli were generat-
ed using speech synthesis with the publicly available diphones
from the MBROLA project [9]. We synthesized the phonetic tran-
scription directly from the database. The phone duration of the
stimuli is therefore an immediate result of the aligner*s output.

Three versions of each intonation phrase were generated: One
with the original F,, contour, one with the F contour generated by
the model described in this paper and one with an F; contour gen-
erated by means of a rule-based infonation generation [10]. The
rule-based generation is based on a direct mapping of TSM targets
into F) targets according to rules operating on the syllable struc-
ture. The resulting F, contours are appropriate phonetic represen-
tations of the underlying TSM description, although not always
completely natural due to the restricted number of rules involved.

The stimuli were presented in a web-based test environment,
where the raters could click on icons to listen to the stimuli. To
rate the stimuli, they pressed the respective answer buttons result-
ing in the automatic presentation of the next stimulus (or pair of
stimuli). Thus we had no direct control over the timing of the test.
All stimuli were repeated once.



Experiment 1. In the first perception test we asked for an evalu-
ation of the naturalness of the intonation of the stimulus present-
ed. We wanted to know whether our listeners would accept the
intonation confours as possible realizations of some underlying
meaning. We also used stimuli with completely flat intonation as
control items. The listeners could answer on a 6 step scale ranging
from O to 5. All ratings had verbal attributes (like very natural, al-
most natural, etc.) assigned within brackets.

The original contours were rated with an average score of 3.39,
rule-based contours with 3.09 and the data-based generated con-
tours with 3.79. Original and rule-based contours showed no sig-
nificantly different ratings. whereas the data-based approach was
rated significantly higher (variance analysis on all versions, p<
107 and Turkey-Test, p<10'3) than all other methods. The test
item with flat intonation was rated with 1.95, which is significant-
ly lower than all other stimuli. We can see that the neural net
based contours are rated to be very natural. They even got better
results than the originals. However, we don’t wish to assign too
much importance to the lower rating of the original contours, be-
cause it might be due to their unsmoothed contours as compared
to the smoother generated contours.

Experiments 2 and 3. In two experiments we compared stimuli
with original intonation contours and stimuli with rule-based (ex-
periment 2) or data-based (experiment 3) generated contours. We
asked the listeners to evaluate the difference between the two in-
tonations on a scale from O to 4 (with verbal attributes) . This test
gives us an interpretable result under the assumption that the orig-
inal contours are a prototypical realization of the labelled TSM
notation. If the two intonation contours are rated to be very simi-
lar, we can conclude that the two stimuli have the same interpre-
tation (as far as it is expressed by intonation). As control pairs we
also provided two stimuli with accents that were distinctly differ-
ent from each other (different pitch accent types).

The rating for the rule-based version was 1.28 and 1.81 for the
data-based version. These two results are significantly different
(variance analysis, significance<107%). We analyzed the bad re-
sults of the data-based version and found that the two examples
rated with a bad score had problems with modeling a high bound-
ary tone and with the alignment of a falling accent. High bound-
aries are rare in the news corpus, which might explain the
difficulties. However, there seem to remain problems due to the
inexact alignment of accents. The deviation from the original in-
tonation contours was nevertheless significantly smaller than for
the test stimuli.

Experiment 4. We wanted to know whether listeners would pre-
fer rule-based stimuli or stimuli with intonation generated by neu-
ral nets. Thus we presented these stimuli in pairs and asked which
one listeners preferred. It turned out that for all but one stimuli
presented listeners chose the data-based model. We can conclude
that the model presented in this study is preferable to a direct rule-
based implementation of intonation modeling.

5. DISCUSSION

We presented a data-based method of intonation generation. It
successfully uses knowledge known taken from intonation theory

in the parametrization step. The F, contours generated by the neu-
ral nets were rated as highly natural. The perception test also re-
vealed that there is some potential for improvement in the
alignment of accents. A timing model as presented by [11] might
be helpful here. In general, however, we can say, that our hypoth-
eses about intonation description, intonation modeling and funda-
mental frequency generation are in principle correct. The
intonation model has been fully integrated into the FESTIVAL
text-to-speech system [12].

As the F( parametrization has been developed to code knowledge
about intonational phenomena, it can also be used as a tool for
phonetic analysis. It has been successfully applied to the analysis
of the Lithuanian accent [13] and to the register analysis of dis-
course prosody [10].
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