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ABSTRACT

This paper presents Mimic : a decision-tree based
concatenative voice adaptive text to speech
synthesiser. Mimic integrates text to speech synthesis
(TTS) with speech recognition and speaker adaptation.
Speech is synthesised from concatenation of triphone
synthesis units. The triphone units are obtained from
clusters of training examples modelled, labelled and
segmented using clustered HMMs and Viterbi
segmentation. The prosodic structure of pitch,
duration and energy contours are captured using
statistical training methods. The concept of a decision-
tree based statistical micro-prosody model is
introduced as a hierarchical method of modelling
prosodic parameters. The voice adaptation component
involves the adaptation of the spectral parameters as
well as pitch, duration, and energy.

1. INTRODUCTION

Trainable voice-adaptive text to speech synthesisers
(TTS) will have many applications beyond automatic
directory enquiry [1-6]. Applications of voice
adaptive TTS include; interpreted telephony, low bit
rate speech coding comprising speech recognition and
speaker parameterisation at the transmitter and voice-
adaptive TTS at the receiver, broadcast studio and
multi-media technology, voice dubbing and imitation,
and personalised-voice for application’s such as aid
for the disabled. A wider application of TTS requires
advances in two areas; (a) improving the prosodic
quality of speech and (b) making TTS voice-adaptive.
Although in recent years there has been significant
improvement in the quality of TTS, their naturalness
still falls short of that of human speech. This is mainly
due to the lack of natural prosody; the so called super
segmental  interrelation between  concatenated
segments of speech. The prosodic parameters are the
pitch, duration, energy and stress which itself is a
function of energy and duration. There are basically
two approaches to the synthesis of prosody; rule base
linguistics methods and statistical methods. The

statistical methods of deriving prosody from training
data, combined with the linguistic rules, could be as
promising as the use of statistical techniques in speech
recognition. In this paper we introduce and focus on
the concept of micro-prosody; these are inter-phonetic
relations between pitch duration and energy.

Voice conversion is another aspect of TTS described
here. The goal of voice adaptive TTS is to employ a
speech synthesiser in tandem with speech recognition
so that the system can mimic a speaker’s voice.

This paper is organised as follows. First, the design of
TTS synthesis unit inventory is described. Then the
prosody model is presented. Next is a description of
the voice conversion method, followed by evaluation
and conclusion.
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Figure 1 - A voice adaptive TTS

2. DESIGN OF TTS SYNTHESIS
TRIPHONE INVENTORY

The speech unit for synthesis is chosen so as to reduce

the subsequent signal processing required to improve

the TTS quality. The automatic design of the TTS

synthesis unit inventory involves the following steps

1. the choice of the synthesis unit; phone, syllable,
etc.

2. statistical modelling of the synthesis units,



3. labelling and segmentation of the training
database,

4. selecting the best synthesis unit examples from the
many available in the training database.

Speech is modelled with context dependent triphone
units [1]. The use of triphones, in addition to capturing
the contextual correlation of successive speech units,
alleviates the distortion effects of any timing errors in
unit segmentation process. In general the quality of
TTS improves with increased contextual resolution.
Particularly the naturalness of synthesised speech
improves substantially when different synthesis units
for word internal and cross word triphones are used.
The first stage in the design of a concatenative TTS is
the modelling, segmentation and labelling of the
training speech units, and the selection of the best
examples for TTS inventory. With the 45 phone set of
the English BEEP dictionary there are theoretically
more than 90,000 triphones. Due to phonological
constraints, many of these do not occur and a total of
about 20000 was observed in training data. A decision-
tree clustering method is employed to cluster the
triphone HMMs, and to estimate the models and the
synthesis units for unseen triphones.

The triphone HMMs are then used for the labeling and
segmentation of the training data. Speaker dependent
HMMs used to segment the same data on which the
models have been trained yields highly accurate
segmentation and estimation of the timing boundaries
of the triphones.

In general for each triphone there are a number of
examples in the training data base. These examples
are ranked in terms of their power, duration, and their
likelihood from their respective HMMs. The best
example for each triphone are selected to form the
triphone inventory. The criterion for selecting the best
quality segment may be based on maximising
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the probability of a segment given the HMM A and
pitch f;, energy e, and duration 4. In Eq(l)
xe fild)yn fr(e)n f5(fy) selects an intersection of
the examples with preferred values of prosody
parameters. For example the functions of duration and
energy, f1(d) and f,(¢), may be selected to favour units
around or on the positive side of the mean value.

3. STATISTICAL MICRO-PROSODY
TREE MODEL

Prosodic parameters span the duration of a word, a
phrase or a sentence, and are used in speech to convey
tonal quality, intention, and meaning [3-6]. Prosodic
parameters include pitch, energy, and duration, these
parameters are also affected by the level of word stress.
The triphone segments in a TTS synthesis unit
inventory are taken from various words spoken in
different contexts and sentences, and even in different
recording sessions. Hence the sequence of triphones in
a concatenative synthesised speech sentence usually
lack the correct interrelation between pitch, loudness,
duration and stress. The prosodic parameters need to
be processed to maintain a natural sounding relation
between the prosody of successive triphones. The
synthesis of the prosodic parameters, due to the lack of
an effective computational model of prosody, remains
the most challenging aspect of the design of TTS.

This section presents the concept of decision tree
statistical micro-prosody model. Micro-prosody are
defined as prosodic relations between successive
phonetic segments. Micro-prosody parameters are
considered as signals whose states depend on the
current and the neighbouring phones, for example the
probability of pitch frequency can be modelled as
shown in figure?2 as
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where the prosody of a phone is affected by the
neighbouring phones, thier prosodic conditioning and
the stress.
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Figure 2 A chain model of prosodic feature trajectory.

For modelling and training of prosodic parameters a
hierarchical decision tree-based prosody clustering
structure is used in which linguistic knowledge and
statistical training methods are combined. At the
lowest level for each triphone a set of parameters are
estimated to maintain the correct ‘micro-prosodic’
relationship between the energy, the duration and the
pitch of successive triphones in a sentence. For
example for triphone ‘b’ with a left phonetic context of



‘@’ and a right context of ‘c’, ‘a-b+c’, we estimate
triphone level prosodic parameters such as pitch(bla,c)
energy(bla,c), and duration(bla,c). For context
dependent parameters the mean and variance of the
prosodic parameters and their ratios such as [ey/e,,
evfec, dvld,, dold., foulfocs fovlfoc] are estimated.

These statistics are then used to maintain the correct
relation between prosody of successive triphone units

in synthesised speech.

3.1 Micro-Prosody Adaptation
The mean and variance of the distribution of the
micro-prosody parameters of the source speaker s is

adapted to that of the target speaker ¢ using the
following relation [7]
fOZ\bp =0 foup, B 3)

where the notation fp,. denotes the pitch of the
triphone a within the context of neighbouring phones
b and ¢, and the adaptation coefficients o and B are
given by

B=n, —ourg )

where i and & denote the context-dependent mean
and variance of prosodic parameters. This relation is
used for mapping of pitch, energy and duration
parameters.

4. VOICE CONVERSION

Voice conversion is the mapping of the acoustic space
of one speaker, the source speaker, to the acoustic
space of another, the target speaker [3,4,7]. In [3]
Abe, Nakamura etal describe the use of a vector
quantiser code book as a one to one mapping function
between the spectral vectors of the source and the
target speakers. This approach was extended in [4] to
a probabilistic Gaussian mixture model (GMM). In
this paper these ideas are further extended to include
hidden Markov models (HMMs) of context-dependent
triphones. The factors that affect the voice
characteristics of a speaker are gender, age, prosodic
parameters and accent. Gender and age effect the
vocal tract size and characteristics and also the pitch
frequency. The simplest method for speaker
adaptation involves frequency warping in which,
given set of phonetic HMMs, for the input speech a

phone-dependent ML warping parameter is estimated
to map the frequency spectrum of the synthesiser’s
voice to that of the input voice. A more detailed
transformation has a full matrix linear transform for
each triphone. The linear transformation matrices are
estimated using an maximum likelihood criterion. The
transforms are arranged in a phonetic-tree cluster
structure, where the number of transform estimated at
each level depends on the amount of training data
from the target speaker.

4.1 Voice Spectral Mapping Functions

The mapping function converts the spectral envelop of
the source speaker to that of the target speaker. Using
least squared error optimisation the mapping function
between the source spectrum X(w) and the target
spectrum Y(w) for the k" speech class is of the form

ElY, (0)]

L@ = 5% @]

X, (®) (5)

The expectation functions are obtained using VQ
codebooks of the spectral envelopes of the source and
the target speakers.

In [4] a Gaussian mixture model is described for
mapping the source spectrum to the target spectrum.
Extending the mapping function here to context-
HMMs,
Gaussians per state model, the mapping between the

dependent  phonetic with  M-mixture

corresponding states of phonetic HMMs yields
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(6)
where v, u, are the mean of y and x, X is the
covariance matrix of x and I"the cross-covariance of x
and y. A drawback of Eq(6) is that it needs the cross-
covariance of the source and target speakers.
An alternative method of spectral conversion is to use
a linear speaker transform as in speaker adaptive
speech recognition as

Y = Ax, )

Where the linear transformation is a full matrix. The
solution for A can be obtained using a least squares or
a probabilistic optimisation. Eq(7) can be extended to
a decision tree structure of matrix transforms, where
the number, and contextual resolution of transforms
increase as more data becomes available.
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Figure 3 A block diagram illustration of pitch estimation system.
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Figure 4 An original signal 'Then four months’, the pitch mark

sequence, the synthesised signal and its spectogram.
5. EVALUATIONS

The data base used for the initial training of Mimic is
six hour recording of a person’s voice speaking in a
natural clear conversational manner. The speech is
modeled using context dependent triphone HMMs. For
HMM training speech is segmented into frames of 25
ms length with 10 ms overlap between successive
frames, and each frame is represented by 13 cepstral
coefficients and the first and second derivatives.
Decision tree clustering is used to limit the number of
triphone HMMs to about a total of 9000 word internal
and cross-word triphones and to synthesis the unseen
triphones. A decision tree clustering method was also
used to model the space of the prosody parameters. To
derive prosodic models estimates of duration, energy
and pitch frequency are needed. The pitch frequency
and the rate of change of pitch for each phone was
estimated using a closed loop harmonic analysis
system shown in figure 3.The speech units for the
synthesis inventory are selected to reduce the
subsequent signal processing steps needed for high
quality synthesis. The distance from the HMMs and
prosodic models are used to rank and select the best
speech units.

For text to speech synthesis, the text is first analysed
and then synthesised using the inventory and the
prosody model. The prosodic parameters of speech are
modified using a harmonic synthesis model of speech
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segments. We asked our colleagues and visitors to our
lab to compare the quality of TTS speech produce by
Mimic against those of high quality TTS accessible on
the internet. Mimic, without any manual intervention
and tuning in its synthesis unit selection, was
perceived to be as good as, and in many cases better
than, those TTSs it was compared with. Particularly
impressive is the ability of Mimic to retain good
micro-prosodic aspects of the speech sound.

6. CONCLUSION

This paper introduced Mimic a voice adaptive
decision-tree based context dependent TTS, that
integrates speech recognition, text to speech synthesis
and speaker adaptation. The concept of a tree based
context dependent statistical micro-prosody model was
presented. This model captures the statistical
correlation of synthesis segments at phonetic level.
The paper also described methods of speaker
adaptation that more closely integrates speech

recognition and synthesis.

REFERENCES
[1] R.E. Donovan. (1996) Trainable Speech Synthesis,

PhD Thesis, Cambridge University Engineering

Department.
[2] X. Huang, A. Acero, H. Hon, Y. Ju, J. Liu, S.

Meredith, M.Plumpe. (1997) Recent improvements

on Microsoft's trainable text-to-speech system -
Whistler, ICASSP.

[3] M. Abe, S. Nakamura, K. Shikano,H. Kuwabara
Through  Vector
Quantisation, Proc. IEEE Int. Conf. ICASSP-88,

(1996), Voice Conversion

pages 655-658.

[4]Y. Stylianou, O Cappe (1998), Voice Conversion
Based on Probabilistic Classification and Harmonic

Noise Model, proc. ICASSP-98, pages 28-284.

[5] K. Ross and M. Ostendorf. (1996) Prediction of

abstract prosodic labels for speech synthesis,
Computer Speech and Language,10, pp.155-185.

[6] H. Shimodaira and M. Nakai, Prosodic phrase

segmentation by pitch pattern clustering, Proc.
ICASSP, pp.1I-185 - I1-188, 1994.

[71 L. M. Arslan, D. Talkin (1998),
Transformation Using Sentence
Alignment and Detailed Prosody Modification,
IEEE Proc. ICASSP98.

Speaker
HMM Based



