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ABSTRACT

A new algorithm to reduce the amount of calcula-
tion in the likelihood computation of continuous
mixture HMM(CMHMM) with block-diagonal co-
variance matrices while retaining high recogni-
tion rate is proposed. The block matrices are
optimized by minimizing difference between the
output probability calculated with full covariance
matrices and that calculated with block-diagonal
covariance matrices. The idea was implemented
and tested on a continuous number recognition
task.

1 Introduction

In speech recognition, two conventional methods
have been used to calculate the likelihood com-
putation of CMHMM. One is to use full covari-
ance matrices and the other is to use diagonal
covariance matrices(2l. The former realizes higher
recognition rate. However, if the dimension of the
covariance matrices is large, the amount of calcu-
lation is too large to realize a real-time system.
The latter, in which only diagonal elements of the
covariance matrices are used, reduces the amount
of the calculation. However, using only diago-
nal elements results in a poorer recognition rate
than using full covariance matrices, especially in a
noisy environment. Although each method has its
advantages, tradeoff between the recognition rate
and the amount of calculation is not considered.

To solve this problem, a new algorithm using
block-diagonal covariance matrices is considered.
The crucial ideas are as follows:

1: Some non-diagonal elements of covariance ma-
trices, which have a significant effect on the
output probability, are preserved as block ma-
trices.

2: Block-diagonal covariance matrices are cre-
ated by flexibly determined structure of block
matrices, considering tradeoff between the re-
cognition rate and the amount of calculation.

3: The block matrices are optimized by mini-
mizing difference between the output proba-
bility calculated with full covariance matrices
and that calculated with block-diagonal co-
variance matrices.

The paper is organized as follows. Section 2
confirms the ability of the conventional method to
calculate the likelihood computation of CMHMM.
In Section 3 the method to calculate the likelihood
with block-diagonal covariance matrices is shown.
Section 4 reports the results of a recognition ex-
periment and shows the effect of the proposed
method. Finally, Section 5 concludes this paper

and indicates some guidelines for future work.

2 Conventional Likelihood Co-
mputation of CMHMM

In CMHMM, the likelihood b;; between an input
feature vector and each Gaussian distribution is

1
bij(ys) = (2m)n/2| 525|172
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where y; denotes an n-dimensional input feature
vector at time ¢, X';; and p;; are a covariance ma-
trix and a mean vector of a Gaussian distribution
respectively, and 4 and 7 denote state numbers.
To make the expression short, the suffixes < and j
are omitted in the following discussion.

The order of computation of the exponential
member in the equation (1) is n?. For a real-time
recognition system, the reduction of the amount
of the arithmetic operation is crucial.

One conventional method to reduce the calcula-
tion is to use diagonal covariance matrices. If a
diagonal covariance matrix is

% diag = diag(07,03,...,05), (2)

where 62(i = 1,...,n) are variances for each fea-
ture vector component, then the equation (1) be-
comes

1
(27|-)n/2 |2diag|1/2
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By using covariance matrices, the order of compu-
tation of the exponential member in the equation
(3) is reduced to n.

In the equation (2), however, non-diagonal el-
ements of a covariance matrix are replaced with
zero. This replacement is equivalent to assum-
ing that elements of a characteristic vector have
no correlation to one another. If some feature
vector components have significant correlation to
one another, the difference between the output
probability calculated with full covariance matri-
ces and that calculated with diagonal covariance
matrices becomes large and causes the degrada-
tion of recognition rate. By using block-diagonal

covariance matrices, this problem can be solved.

3 Likelihood Computation of

CMHMM using Block—
diagonal Covariance Matrices

3.1 Continuous Mixture HMM using
Block-diagonal Covariance Matri-
ces

A block-diagonal covariance matrix can be de-

noted as
Al 0 0
0 A, "-. :
ZBD: . 2 ’ (4)
: .0
0 --- 0 Ap

where A; is a d;-dimensional square, symmetric
and positive definite matrix and d; satisfies

D
Z d; =n. (5)
i=1

If X in the equation (1) is replaced with X pp,
then the equation (1) becomes

1
b(yt) = (27r)n/2|SBD|1/2
1 & t 4—1
X exp[—§ Z T, AL T, (6)
k=1

where 2, is a dj-dimensional vector and satisfies
— T
Y —p=(T122-- D) . (7)

The order of computation of the exponential
member in the equation (6) is P (d; x d;), whereas
that using full covariance matrices is n2.

The structure of block matrices, d; and D, is
determined according to specifications of a sup-
posed system. If a faster system is needed, the
number and dimension of block matrices should
be small, namely EZD (di x d;) should be small.
On the other hand, if a higher recognition rate is
required, they should be large. In this case the
amount of calculation becomes large.

After the determination of the structure, the
next problem is how to choose block-matrices.



3.2 How to Obtain “Optimal” Block-
diagonal Covariance Matrices

If sufficient training data are prepared and full
covariance matrices are well trained, the perfor-
mance using the full covariance matrices is higher
than using any block-diagonal covariance matri-
ces. Considering this fact, block-diagonal covari-
ance matrices have been chosen to minimize the
difference between the equation (1) and (6). |¥|
in (1) and |¥pgp| in (6) are constant. So block-
diagonal matrices are determined by minimizing

2T 2l — 2T XL x|
= T (X7 - Z5L)=|, (8)
where ¢ =y, — p.

To obtain X gp which minimizes the equation
(8), the following lemma is available:

Lemma 1 Let A, B € R™"*" * be symmetric ma-
trices and A be positive definite. Then, under
the condition €T Az < 1, the mazimum value of

|&T Bx| is maxy, |A(BA™Y)| .

A full covariance matrix X, a block-diagonal co-
variance matrix X gp and their inverse matrices
>t ZE&) are square, symmetric and positive
definite. So X! — Zgb is a square and symmet-
ric matrix (not necessarily positive definite). If
A and B in the lemma 1 are replaced with X!
and X _1—255 respectively, then, under the con-
dition 27 X'z < 1, the maximum value of the
equation (8) is

max (57 = B5h) )| = max AT - F5h 3|
(9)

A vector y, which satisfies the condition 7 X~ x

1 is a vector one standard deviation away from
the mean g. Then a block-diagonal covariance
matrix which minimizes the equation (9) under
7YX 'z < 1 has been chosen. Namely, an op-
timal block-diagonal covariance matrix is deter-
mined by

X pp = arg glin m).'fmx|)\([ - XL (10)

BD

*R™*™ means a class of n X n-dimensional real matrices.
TA(A) is an eigen value of a matrix A.

The X' pp cannot be solved analytically. So this
problem is solved by choosing a combination of
feature vector components which minimizes the
equation (9). If elements of a full covariance ma-
trix are o;j, then the 4-th block matrix in the
equation (4) is expressed as
Opp Op.p+di—1
A, . .

Optd;—1,p Optd;—1,p4+d;—1

where p = z;l’:_f
The procedure of the algorithm to choose the
combination is as follows:

S1: Compute full covariance matrices(n x n di-
mension) for each HMM model.

S2: Determine the number(D) and dimension (dx
d) of block matrices according to specifica-

tions of a required system.

S3: For each possible combination of d input fea-
ture vector components, make a block-diagonal
covariance matrix X gp with their covariance
Then

calculate the equation (9) using the ¥ gp and

elements and all diagonal elements.

obtain the combination which minimizes (9).

If the number of block matrices reaches the
determined number (D), use the obtained block-
diagonal covariance matrices X gp for recog-

S4:

nition. If not, remove rows and columns that
include the obtained block matrices from full
covariance matrices X and reiterate from S3.

In S2 the number and dimension of block matrices
do not need to be the same values for all covari-
ance matrices.

4 Simulations

The algorithm proposed in the previous section
was implemented and tested on a continuous num-
ber recognition task.

The training and evaluation conditions were as
follows:

- A feature vector was 30-dimension.



- Training data were 35 balanced four-digit con-
tinuous numbers uttered by 222 different speak-
ers.

- Evaluation data were the same numbers ut-
tered by 10 different speakers.

- Each evaluation datum was recognized under
city car noise of 20, 10, 0 dB.

Table 1 shows the average recognition rate un-
der each condition. Each full covariance matrix
was block-diagonalized to fifteen 2 x 2-block ma-
trices, ten 3 X 3-block matrices and six 5 x 5-block
matrices.

Table 1: Speech recognition performance under
city car noise(%)

20dB | 10dB | 0dB

diagonal | 96.51 | 97.09 | 96.51

2x2x15|97.09 | 97.09 | 96.22
3x3x101|97.09 | 97.09 | 97.38
5x5x6 |97.97 | 98.26 | 98.26
full 99.42 | 100.00 | 99.13

The reduction rates of the calculation of diag-
onal, 2 X 2 x 15,3 x 3 x 10 and 5 X 5 x 6
block-diagonal covariance matrices as compared
with full covariance matrices were 96.7%, 94.7%,
90.0% and 83.3% respectively. Table 1 also shows
that the tradeoff between the recognition rate and
the amount of calculation can be determined flex-
ibly through the number and dimension of block
matrix.

5 Conclusion and Further Work

A new algorithm to reduce the amount of calcu-

lation in the likelihood computation of CMHMM

with flexibly created block-diagonal covariance ma-
trices has been proposed. The idea was imple-

mented and tested on a continuous number recog-

nition task. The result of the simulations showed

that tradeoff between the amount of calculation

and the recognition rate can be determined flexi-

bly with the proposed algorithm.

Further work will include:

- Vector quantization of the combined feature
vectors and table look-up.

- Block-diagonal training when training-data
are poor.

Vector quantization and table look-up is a con-
ventional method to reduce the amount of calcu-
lation in the likelihood computation of CMHMM.
But quantization error becomes large in propor-
tion to the dimension of a feature vector. In the
proposed method each dimension of a block ma-
trix can be small. This leads to small quantization
€rTor.

This paper assumed that full covariance matri-
ces were well-trained. If training-data are lim-
ited and full covariance matrices are poorly es-
timated, the proposed algorithm doesn’t provide
reliable block matrices!!]. In this case, the follow-
ing method is possible:

- First, create full covariance matrices with small
number of mixtures.

- Secondly, obtain an optimal combination of
feature vector components with the proposed
method.

- Finally, retrain block-diagonal covariance ma-
trices with more mixtures using the combina-
tion obtained above.

Verification of these methods is a subject for
future work.
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