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ABSTRACT

Most current state-of-the-art large-vocabulary continuous speech
recognition (LVCSR) systems are based on state-clustered hidden
Markov models (HMMs). Typical systems use thousands of state
clusters, each represented by a Gaussian mixture model with a few
tens of Gaussians. In this paper, we show that models with far
more parameter tying, like phonetically tied mixture (PTM) mod-
els, give better performance in terms of both recognition accuracy
and speed. In particular, we achieved between a 5 and 10% im-
provement in word error rate, while cutting the number of Gaussian
distance computations in half, for three different Wall Street Jour-
nal (WSJ) test sets, by using a PTM system with 38 phone-class
state clusters, as compared to a state-clustered system with 937 state
clusters. For both systems, the total number of Gaussians was fixed
at about 30,000. This result is of real practical significance as we
show that a conceptually simpler PTM system can achieve faster
and more accurate performance than current state-of-the-art state-
clustered HMM systems.

1. INTRODUCTION

Most state-of-the-art speech recognition systems use hidden
Markov models (HMMs) to model triphone speech units. The num-
ber of triphones is usually very large. For example, models with
10,000 triphones are common. Since each triphone is usually mod-
eled by at least three HMM states, this results in about 30,000 HMM
states. Each state is typically modeled by a Gaussian mixture model
(GMM) with a few Gaussians. Thus, the total number of Gaussian
parameters can be on the order of a few hundreds of thousands.

Estimating a separate GMM for each triphone state will require a
huge amount of training data. However, since training data is usu-
ally limited, it is not possible to reliably estimate such a large num-
ber of parameters. In one of the first approaches to robust HMM es-
timation, called the Tied-Mixture (TM) HMM, a single set of Gaus-
sian distributions was shared (or tied) across all the states [1, 2].
Since the Gaussians were shared, data could be pooled from differ-
ent HMM states to train them robustly. Each state was differentiated
by a different mixture weight distribution to these shared Gaussians.
The shared Gaussians along with the mixture weights defined the

*THIS WORK WAS SPONSORED BY DARPA THROUGH NAVAL
COMMAND AND CONTROL OCEAN SURVEILLANCE CENTER UN-
DER CONTRACT N66001-94-C-6048.

state-dependent GMMs. Because of robust parameter estimation,
TM HMMs were found to perform significantly better than “fully
continuous” HMMs, where each state used a separate GMM. To get
more detailed models than TM systems, phonetically tied mixture
(PTM) systems were proposed. In these systems, a separate Gaus-
sian codebook was shared among all triphone states corresponding
to the same base phone [3].

The next step was state-clustered HMMs [4, 5, 6], where the amount
of tying was decreased even further, and which represent the state of
the art in current speech recognition technology. In this approach,
the amount of tying is considerably less than in a TM or PTM sys-
tem. HMM states are clustered according to acoustic similarity. The
states in each cluster either share the same GMM [4, 5], or only
share the same set of Gaussians but use different mixture weights
for each state [6, 7]. A small number of Gaussians is used for each
cluster, and improved acoustic resolution is achieved by increasing
the number of state clusters.

State-clustered HMMs were experimentally shown to be superior to
TM and PTM HMMs (e.g., see [6]). However, it is important to note
that, in this comparison, the TM and PTM systems had a total of 256
and 4000 Gaussians, respectively, drastically fewer than the state-
clustered system, which had about 24,000 Gaussians [6]. Other pre-
vious experiments with TM and PTM systems [2, 8, 9] also appear
to have used very few Gaussians in comparison to that used in most
current state-clustered systems. This observation suggests the pos-
sibility that approaches with more tying, like TM and PTM models,
if appropriately designed, may perform better than in the past. In
particular, we achieved between a 5 and 10% improvement in word
error rate for three Wall Street Journal (WSJ) test sets using a 38-
cluster PTM system as compared to a 937-cluster state-clustered
system, while simultaneously cutting the number of Gaussian com-
putations during recognition in half. This result is extremely signif-
icant as we have achieved a simultaneous improvement in accuracy
and speed. It is also the first time, to the author’s knowledge, that
the conceptually simpler PTM system has been shown to outper-
form the currently dominant state-clustered approaches.

In Section 2, we describe the effect of changing the amount of tying,
by varying the number of state clusters, on recognition accuracy and
speed. In Section 3 we give detailed experimental results comparing
PTM and state-clustered systems. We summarize in Section 4.



2. EFFECT OF VARYING THE NUMBER
OF STATE CLUSTERS

The number of Gaussian parameters that can be robustly estimated
is limited by the finite amount of training data. However, the same
total number of Gaussians can be achieved by using fewer state clus-
ters and more Gaussians per cluster, or more state clusters and fewer
Gaussians per cluster. For example, a system with 1000 state clus-
ters and 32 Gaussians per cluster has the same number of Gaussians
as one with 32 clusters and 1000 Gaussians per cluster. We discuss
how varying the number of clusters affects recognition accuracy and
speed.

2.1.

Consider a state-clustered system where each state cluster shares the
same set of Gaussians, and each triphone state has a separate mix-
ture weight distribution to these shared Gaussians. Suppose we can
robustly train at most N state clusters with M Gaussians per cluster,
given a certain amount of training data. It is possible to decrease the
number of clusters, while increasing the number of Gaussians per
cluster, without affecting the robustness of the Gaussian parameter
estimates, since the total number of Gaussians can be held constant.
We now examine the effect of decreasing the number of clusters on
accuracy.

State Clustering and Accuracy

If the Gaussian distributions for the N state clusters do not overlap
in acoustic space, then further grouping of the clusters will have no
effect on performance, as the resulting models will be effectively
the same, as shown in Figure 1. However, state clusters do overlap

Figure 1: Merging of nonoverlapping state clusters

in acoustic space, as shown in Figure 2. In the overlap region, Gaus-
sians are separately estimated for each state cluster. This causes two
potential problems:

1. Since the data in the overlap region is divided between the two
state clusters, the Gaussians in this region may not be robustly
estimated.

2. There may be redundancy between the Gaussians from the two

state clusters in the overlap region, resulting in wasted param-
eters.

We can address these problems by merging the two clusters into one
cluster with 2M Gaussians. Since data from the two clusters is now
used to estimate a single set of 2M Gaussians, there is more robust
estimation in the overlap region. Further, the previously redundant
Gaussians can now be more effectively used to increase acoustic
resolution, as shown in Figure 2. The improved Gaussian estimates
and the better acoustic resolution can lead to improved recognition
accuracy.

Figure 2: Merging of overlapping state clusters

While merging the two clusters has these advantages, it also has
a potential drawback: it may be necessary to separately estimate
Gaussians in the overlap regions to be able to aid in discriminating
between the clusters, and merging the clusters can reduce this dis-
criminability. Since decreasing the number of clusters can have both
a positive and a negative effect on accuracy, the optimal number of
state clusters can be determined experimentally so as to minimize
the word error on development test data.

2.2, State Clustering and Speed

Computation of the frame-log-likelihoods for all the Gaussian
components in each active triphone state during the Viterbi
search is a significant cost affecting recognition speed. In SRI’s
DECIPHERT™ speech recognition system, this cost is reduced us-
ing Gaussian caching, Gaussian pruning, and Gaussian shortlists.
We now examine how these methods are affected by changing the
number of state clusters.

Gaussian Caching In Gaussian caching, we cache the log-
likelihoods for the Gaussians in a mixture as soon as they are com-
puted for each frame. If the same Gaussian mixture needs to be
evaluated at that frame for another triphone state, the cache is used,
rather than recomputing the likelihoods of the Gaussians in this mix-
ture. This results in a significant cost saving as many triphone states
share the same Gaussian mixture.

When state clusters are merged, the number of mixtures is reduced,



but the number of Gaussians per mixture is increased. Thus, while
fewer Gaussian mixtures will be computed and cached, the number
of Gaussians in each will be proportionally larger. Thus, we expect
no significant effect due to reducing the number of state clusters on
the number of Gaussians computed and cached. However, as we
show in the next section, reducing the number of state clusters can
decrease the cost of each Gaussian computation.

Gaussian Pruning When computing the set of Gaussians for a
state and frame, it is possible to reduce the amount of Gaussian com-
putations by retaining only those Gaussians whose log-likelihoods
are within a threshold of the best Gaussian computed so far. By ex-
panding the diagonal covariance Gaussian likelihood computation,
it is easy to see that we can decide if a Gaussian is within this thresh-
old before computing all the distance components for this frame of
speech. This results in a significant reduction in computation cost.
Intuitively, the larger the overlap between Gaussians, the larger the
number of Gaussians that must be retained for any frame, and the
larger the number of distance components that must be computed.

When state clusters are merged to create a model with less tying,
the redundant Gaussians in the state cluster overlap region are more
effectively used to cover the acoustic space of the clusters. The
resulting Gaussians will also have smaller variances, as shown in
Figure 2. Since smaller variances imply less Gaussian overlap, we
expect the number of Gaussian distance components computed to
be reduced.

Gaussian Shortlists Gaussian shortlists are another way to reduce
the Gaussian computation during recognition [7]. In this approach,
the acoustic space is vector quantized. For each vector quantiza-
tion (VQ) region, a shortlist of Gaussians that have training data
likelihood above some threshold is maintained for each state clus-
ter. During recognition, we find the VQ region corresponding to
the frame being evaluated, and only compute the likelihoods for the
Gaussians in the corresponding shortlists of the state clusters for
that VQ region, resulting in a significant speed-up.

When state clusters are merged to create systems with fewer clus-
ters and more tying, the Gaussian variances are reduced, as in Fig-
ure 2. The reduced variance results in less coverage of the acoustic
space by each Gaussian. Thus, Gaussians that previously belonged
in a shortlist for a VQ region may no longer have likelihoods high
enough to belong in the shortlist for that region. Thus, we expect a
reduction in the size of the shortlists when we decrease the number
of state clusters, and a corresponding reduction in Gaussian compu-
tation.

3. EXPERIMENTAL RESULTS

We experimented using the Wall Street Journal (WSJ) database. For
training, we used 18,000 SI-284 male training sentences, and for
testing we used three different WSJ-based test sets. Each test set
had 10 speakers, and consisted of about 3600 words, for a total of
about 10,900 words. The WSJ domain has been used in previous
U.S. Government-sponsored speech recognition evaluations. The
test sets we used were created for internal development, and are
not standardized test sets from the WSJ domain. A 20,000-word
bigram language model (LM) was used for recognition. We refer to
the three test sets as WSJ1, WSJ2, and WSJ3.

System Word Error Rate (%)
WSJ1 | WSJ2 | NABN

State- 21.65 | 14.08 | 18.29

clustered

PTM 20.49 | 12.58 | 16.78

Table 1: Word error rates for different levels of tying

|| System || Shortlist Size ||
State- 5830534
clustered
PTM 2773199

Table 2: Shortlist size for different levels of tying

We compared two different systems with different levels of tying.
The first is a state-clustered system with 937 clusters and 32 Gaus-
sians per cluster. We chose this baseline configuration because it
has given us good performance in the past. The second is a 38-class
PTM system with 789 Gaussians per class. Notice that both systems
have a total of about 30,000 Gaussians. Both these systems were
trained using the Gaussian Merging Splitting (GMS) algorithm that
we recently developed [10]. This method computes only as many
(Gaussians as can be robustly estimated given the amount of training
data, thus giving reliable models. Table 1 compares the word error
rates for the two systems on the three different test sets. It is clear
that the PTM system is significantly more accurate than the state-
clustered system on all three test sets. In particular, the word error
rate is reduced by 5 to 10%.

In Table 1, we did not use Gaussian shortlists. For the remaining
experiments, we used Gaussian shortlists and only used the WSJ1
test set. In Table 2, we compare the size of the Gaussian shortlists
for the state-clustered and the PTM systems. Here “size” refers to
the number of Gaussians in the shortlists. The number of Gaus-
sians in the PTM system shortlists is half that in the state-clustered
shortlists.

Next, we conducted experiments to evaluate the effect of clustering
on recognition computation and speed. We did this by varying the
level of pruning in the Viterbi beam search and plotting the word
error rate for the WSJ1 test set against different parameters of in-
terest. These are the number of Gaussians we start computing per
frame, the number of actual distance components computed, and
the recognition speed of our system. While the first two parameters
are an objective measure of the Gaussian computation cost incurred
during recognition, the system speed is implementation-dependent.
Figures 3, 4, and 5 show these plots.

It is clear from these figures that a significant computation saving
is gained by using the PTM system over the state-clustered system.
At a word error rate of 22%, the PTM system has about a factor
of 2 less Gaussians started, a factor of 2 less distance component
computations, and a factor of 5 speed-up. Further, at almost all
speeds, the PTM system has a lower word error rate, as shown in
Figure 5. In all three figures we notice that at very high error rates,
the PTM system is worse in terms of Gaussian computation and
speed (where the curves cross). This occurs because at these error



rates, there are only a few active hypotheses in the search per frame,
requiring the computation of only a few mixtures. The fact that
the state-clustered system has only 32 Gaussians per state cluster as
compared to 789 Gaussians for the PTM system then outweighs the
computational benefits of the PTM model described in Section 2.2.
However, we do not anticipate operating in this high word error
region of the curve.
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Figure 3: Word error vs. number of Gaussians started
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Figure 4: Word error vs. number of Gaussian distance components
computed

4. SUMMARY

We provided a new view of parameter tying in HMM-based speech
recognition systems. We showed that PTM systems, if properly
trained, can significantly outperform the currently dominant state-
clustered HMM-based approach. In particular, we achieved be-
tween 5 and 10% reduction in the word error rate. The number of
Gaussians in the shortlists was reduced by half. Finally, at a fixed
word error rate, we achieved a factor of 2 reduction in Gaussian dis-
tance computation during recognition, and a factor of 5 speed-up.

To the best of our knowledge, this is the first paper that shows a
significant performance gain in accuracy, computation, and speed
by using PTM systems as opposed to state-clustered systems.
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Figure 5: Word error vs. recognition speed
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