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ABSTRACT

This paper discusses a methodology using a minimal set of sen-
tences to adapt an existing TTS duration model to capture inter-
speaker variations. The assumption is that the original dura-
tion database contains information of both language-specific and
speaker-specific duration characteristics. In training a duration
model for a new speaker, only the speaker-specific information
needs to be modeled, therefore the size of the training data can be
reduced drastically. Results from several experiments are com-
pared and discussed.

1. INTRODUCTION

This paper investigates various methods to adapt an existing text-
to-speech (T'TS) duration model (the source speaker) to any new
speaker (the target speaker). We use Mandarin as a test case. The
goal is to capture the target speaker's duration pattern with very
few input sentences and to produce a model that performs well on
new text input.

A basic assumption is that the source speaker's duration model
contains information of both language-specific and speaker-
specific characteristics. If we can decompose these two com-
ponents, then the task of training a target model is reduced to
training the speaker-specific component, which in principle can
be estimated with less parameters. The size of the training data
therefore can be reduced, or if the size remains the same, there
would be more observations per parameter, hence a more reliable
model.

We will show that if the parameter set is known, the size of the
training corpus can be reduced drastically by using a greedy al-
gorithm. In the Mandarin test, 9 greedily selected sentences are
sufficient to estimate all 240 parameters from the source model for
the target model. The Mandarin model consists of six sub-models,
corresponding to six major sound classes. Each sub-model has 14
factors. The 240 parameters represent levels in the 84 factors.

We analyzed the recording of these 9 sentences from six target
speakers and evaluated the performance of models fitting differ-
ent numbers of parameters, ranging from a model that uses only
one parameter, the speaking rate, to a model that uses all 240 pa-
rameters from the source speaker's model. Both extremes are not
ideal. On the one hand, one parameter is not sufficient to cap-
ture the target speaker's speaking style. On the other hand, 240
parameters are stretching the limit of the corpus, where many pa-
rameters were estimated with just one observation.

We have observed that the ordering of the effects of factor levels
tends to be preserved across speakers. So we hypothesize that a
new speaker's characteristics can be captured by a set of modifi-

cation parameters, or weights, which estimate the magnitude of
the effects of a factor. This will efficiently reduce the number of
parameters to maximally 84 from 240. Our initial investigation
shows that this is a viable hypothesis.

2. THE SOURCE MODEL

The model of the source speaker is a Mandarin duration model
previously trained on three and half hours of speech from a single
speaker [4]. The data are organized in a category tree, and the data
in each terminal category are used to train a multiplicative model
as in Equation 1 [6, 5]:

Dur(p) = Dmean(p) x D1(f1) x ... x Dn(fn) (1)

where Di( fi) is a parameter whose value reflects the contribution
of factor ¢ when it has level fi, while Dmean(p) denotes the
coefficient of the corrected mean duration of the phone p.

The Mandarin category tree is flat, with no more splitting after the
initial split by six major sound classes. There are six multiplica-
tive models corresponding to the six major sound classes. Each
model was fitted with 14 factors. The sound classes and factors
are listed below.

Sound Classes:

1. Vowel (V): 15 vowels, including 4 diphthongs.

2. Fricative (F): 5 fricatives f, s, x (palatal), S (retroflex), h.
3. Stop and affricate closure (C): 6 stops and 6 affricates.
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. Stop and affricate burst and aspiration (B): 6 stops and 6
affricates.

5. Nasal coda consonant (N): 2 nasal codas. 1 relatively rare
retroflex coda is also included here.

6. Sonorant consonant (S): 8 sonorant/voiced consonants, in-
cluding 2 nasals, 3 on-glides, /, and 2 voiced fricatives.

Factors:

1. Phone identity

2. Tone: Mandarin has 4 lexical tones, one sandhi tone, and a
neutral tone which is similar to an unstressed syllable. The
tone levels may be combined differently in each terminal
category.

3. Preceding phone: Grouped by phone classes. The division is
different in each category. This factor has a strong effect in
the vowel category, indicating that the vowel duration is af-
fected by the sound class of the preceding phone. This factor
has much weaker effect in the initial consonant categories.



4. Preceding tone: Mostly distinguishing whether the preced-
ing tone is a full tone or a neutral tone.

5. Following phone: Grouped by phone classes. The division
is different in each category. For example, vowel height dis-
tinction has an effect in the fricative category but not in the
nasal coda category.

6. Following tone

7. Prominence:
database.

Manually transcribed from the speech

8. Position of the syllable in the word—distance to the initial
position: Typically coding three levels, 0, 1, and 2.

9. Position of the syllable in the word (final)
10. Position of the word in the phrase (initial)
11. Position of the word in the phrase (final)

12. Position of the word in the utterance (initial)
13. Position of the word in the utterance (final)
14. Syllable structure

A total of 292 parameters were used in the original model. Some
parameters cannot be estimated from text, such as the prominence
level, and some parameters have very little effect, such as the fol-
lowing tone, so we trim the parameters to 240 as the basis of cor-
pus text selection.

3. TEXT SELECTION

Once the statistical model is determined and the parameters are
known, we can use a model-based greedy algorithm to reduce the
corpus size. The best-known algorithm for optimizing coverage
is the greedy algorithm as applied to set-covering and matroid-
covering problems. For general Analysis-of-Variance models, the
optimal text selection is transformed to a linear parameter estima-
tion problem, which can be solved by finding a minimal set of
sentences whose design matrix is of full rank [2].

A feature vector f(z) = (f1, f2, ..., f») corresponding to a given
phone segment  can be uniquely represented as a compound row
vector 7( f), in which each sub-vector rx( f) encodes the level on
the corresponding factor. One way to do this is to have the vec-
tor component corresponding to the level in the factor set equal
to 1 and the remaining components equal to 0. Usually, the last
level is represented as a vector of —1. Then r(f) is defined as
(r1(f),-.-;rx(f),1), where the last 1 corresponds to the con-
stant term in the model, and K denotes the total number of terms
in the Analysis-of-Variance model. The design matrix for a sen-
tence consists of the matrix X (s) whose rows are computed as
indicated. The design matrix for a corpus C' is a vertical stack of
matrices X (s), where s ranges over C'. Let D(C') be the corre-
sponding vector of observed duration, P be the column vector of
parameters, then we have D(C') = X (C) - P. P is estimable
if and only if the matrix X (C) is of full rank. The optimization
problem can now be formulated as finding a minimal subset of C,
say, C', so that X (C") is also of full rank. We can achieve further
reduction of text selection if the parameters in multiple models
are considered simultaneously. This is done by concatenating all
the parameters from different models in the vector P. This kind
of concatenated design matrix can handle any kind of classifica-
tion tree with each leaf characterized by an Analysis-of-Variance
model.
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Figure 1: Speaking rate coefficients of different sound classes
from six speakers

4. DATA

Six sentences were selected from a corpus of 15620 newspaper
sentences by the first run of the greedy algorithm selection. These
sentences can be used to estimate the 240 parameters we targeted
in the greedy search. To increase the number of observations we
run the greedy algorithm iteratively to select a total of four sets
of sentences, each set containing 6 to 7 sentences. The sentences
were recorded by 10 speakers; some read it with varied speaking
rate. We have analyzed the first run of sentences in normal speak-
ing rate from six of the speakers. After the initial analysis, we
found that some parameters cannot be estimated due to reading
discrepancies that destroy some factor levels, primarily from the
insertion of glottal stops before word-initial low vowels. Three
more sentences were selected to compensate for the loss.

The analyses performed for this paper are based on this 9-
sentence, 6-speaker database. It contains 4346 phones, with 1529
vowels, 599 closures (phrase-initial ones excluded), 662 bursts
with aspiration, 561 nasal codas, 401 fricatives, and 594 sono-
rants.

We use this corpus to test a few models, starting with one that es-
timates only one parameter per target speaker, the mean speaking
rate.

5. SPEAKING RATE

Some voice conversion systems such as the one reported in [1]
simply convert the source duration model to the new speaker by
detecting and changing the speaking rate. Speaking rate can be
estimated quickly given any input, which is an undeniable advan-
tage [7]. However, its effectiveness rests on whether the duration
of phones is stretched or compressed uniformly when speaking
rate changes [3]. We compare two models: using only the coef-
ficients of the source model described in Section 2 to predict the
duration of the six new speakers, or to apply a speaking rate mul-
tiplier for each speaker to the original model. We compare these
two conditions using root mean squared deviation of observed and
predicted duration of the 36 models (6 speakers,each with 6 mod-
els for different sound classes). 14 models perform better with the
speaking rate multiplier, 19 models perform worse, and 3 models
are practically identical. One question is why the rate multiplier
does not work as well as expected.



We investigate this question further by training the usual six mod-
els for each speaker, but using only two factors: phone identity
and speaker identity. The coefficients obtained from the speaker
factor are plotted on the y-axis in Figure 1. The six speakers, or-
dered from fast (with smaller coefficients) to slow (with larger co-
efficients), are shown on the x-axis. The plotting symbols indicate
the models by sound classes: v, c, b, n, f, s represent vowel, stop
and affricate closure, stop and affricate burst, nasal coda, frica-
tive, and sonorant, respectively. The thick line going through the
middle shows the mean rate of each speaker. If phone durations
are stretched uniformly from fast to slow speakers, we expect the
lines connecting phone classes not to cross. This is apparently not
the case.

The total lack of consistency in the scaling of sound classes across
speakers is interesting, particularly considering that two pairs of
co-varying coefficients B/F and V/N, which show that there is a
high level of consistency within speakers. For all speakers, the
burst and fricative coefficients are quite similar, with four speak-
ers showing nearly identical values. The vowel and nasal coda co-
efficients of each speakerare also comparable. Note that fricatives
and plosive bursts are similar, in particular, affricates may be ana-
lyzed as the combination of a stop followed by a fricative. Vowels
and nasal codas are similar in that they comprise the rhyme of the
syllable. Apparently the shared properties of B/F or V/N are sub-
ject to contextual factors in the same way for the same speaker,
which contributes to the perceived speaking style of the speaker.
Across speakers the scaling of sound classes becomes unpredicat-
able. A good example is that bursts and fricatives are proportion-
ally long for speaker 1 but are short for speaker 5. At least part of
the durational characteristics of a speaker is revealed in the length
proportion of sound classes. Modifying speaking rate uniformly
will not be effective.

If we use pre-selected input text, then we are able to estimate
many more parameters given that the text is optimized with refer-
ence to the intended parameters. One additional advantage of us-
ing pre-selected sentences is that many procedures such as speech
segmentation and parameter identification can be automated. In
the following section we identify a set of parameters that can be
used effectively to adapt duration models to the target speaker.

6. THE TARGET MODEL

Given that our corpus was based on greedily selected sentences
and was amended for performance errors, we can use the cor-
pus to estimate all the parameters as in the model of the source
speaker, following Equation 1. The performance of these models,
referred to collectively as Model 1, is used as the baseline perfor-
mance guide to judge subsequent experiments. Model I is trained
separately for six speakers, where the tree categorization and fac-
tor levels were identical to the final revision of the model with 240
parameters described in Section 2. Table 1 gives the correlation
scores of the predicted duration and the observed duration from
36 models, sound classes in rows and speakers in columns.

We proceed to test Model II, given in Equation 2, which assumes
common coefficients Drnean(p) and Di( f1) for all speakers. For
each speaker K" we only need to estimate a set of modification
parameters k.

Speaker 1 2 3 4 5 6

Vowel 0.83 | 0.77 | 0.77 | 0.80 | 0.83 | 0.81
Burst/Asp 094 | 093 [ 093 | 094 | 095 | 091
Closure 0.77 | 0.73 | 0.80 | 0.75 | 0.71 | 0.78
Nasal Coda | 0.75 | 0.71 | 0.65 | 0.81 | 0.71 | 0.74
Fricative 087 | 0.78 | 0.75 | 0.81 | 0.70 | 0.73
Sonorant 0.82 | 0.66 | 0.74 | 0.71 | 0.80 | 0.70

Table 1: Correlation of estimated and observed duration—Model I
Dur(p)x = Dmean(p)k X Dl(fl)kl X o X Dn(fn)kn )

Equation 2 makes sense if the parameter coefficients of a given
factor from different speakers are in scale. It was shown that
vowels in English do indeed maintain their scale under different
prosodic conditions [5]. Our data show that the phone levels in the
phone identity factors are typically in scale across speakers. We
show the cross-speaker coefficients of the vowel identity factor
and the tone factor in Figures 2 and 3. In Figure 2, the apical vow-
els J, Q are consistently the shortest for all speakers, high vowels
i, u, U are in the next group, while low vowels a and diphthongs
are the longest.

Figure 3 illustrates the cross-speaker consistency from the tone
factor of the vowel category. which shows the effect of tones on
vowel duration. The factor successfully captures an impression
noted during the recording session that some speakers maintain
clear contrast between full tone and neutral tone syllables, while
some hardly make any distinction. The tone coefficients show that
for all speakers, the neutral tone labeled as 0 has the strongest ef-
fect in shortening vowels. The magnitude of this effect is different
for each speaker. It appears that the target speaker's characteris-
tics can be captured by multiplying the source speaker's coeffi-
cients with a weight. In this case, only one weight, or modification
parameter, needs to be estimated instead of 5 tone parameters.

We proceed with experiment 1 to assess the validity of this as-
sumption for all factors. Given a matrix A of m x n dimensions
containing coefficients from a factor with m levels and n speak-
ers, we want to know whether A can be approximated by F' - W,
where F' is a m X 1 vector functioning as the common parame-
ter vector of factor f for all speakers, and W is a 1 x n vector
of weights. We obtained F' and W by singular value decomposi-
tion, which returns two orthogonal matrices and a diagonal matrix
A =UDV?", where D is the diagonal matrix. The best approxi-
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Figure 2: The coefficients of the vowel identity factor
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Figure 3: The effects of tones on vowel duration.

mation to A is v/dy - u1 - v1. We take s, the first column vector of
U, as the common parameter vector F', and V/dy vy asthe weight
vector W, where v is the first row vector of V. We next com-
pute eigenvalues. The first eigenvalue is very high in the majority
of matrices, suggesting that most of the variation can be captured
in the first eigenvector and the assumption underlying Equation 2
is supported.

There is an alternative method to calculate V. We substituted
the factor level codes in the duration data matrix of each speaker
with the corresponding F' entries and fitted a robust regression
model to predict the observed duration. The coefficients of this
model are used as weights W’'. We then estimate duration with
F and W'. The correlation scores of the predicted and observed
duration are given in Table 2. The result is comparable to the
baseline correlation scores shown in Table 1, which is very good
considering the 3 to 1 reduction of the number of parameters.

Experiment 1 was performed primarily to test the consistency
across speakers and to assess the possibility of using weights. The
common vector F' was estimated with the target speaker's data,
and all speakers were reading the same sentences. The results in
Table 2 were obtained from a test on the training data. We contin-
ued with experiment 2 to see how the described method performs
with testing data.

In experiment 2, the factor level codes in the data matrix were
replaced with corresponding coefficients from the models of the
source speaker, rather than with F'. Again, we fit a robust re-
gression model to predict the target speaker's duration, and use
the coefficients from this model as weights, adapting the source
model to the target model. The correlation scores of the observed
and predicted duration are given in Table 3. With the exception of
closure duration, the results from all other sound classes are fairly
good. In a few cells the scores are even better than those from ex-
periment 1. Even though the correlation scores from experiment
2 are in general worse than those from experiment 1, the models
of experiment 2 should perform better on new sentences since the
source speaker's model is estimated from a much larger corpus,
and is therefore less affected by random variations in speech and
the peculiarity of individual sentences.

7. CONCLUSION

We have shown that a target speaker's duration model can be ef-
fectively adapted from a source speaker's model. This is achieved

Speaker 1 2 3 4 5 6

Vowel 0.81 | 0.74 | 0.76 | 0.78 | 0.79 | 0.80
Burst/Asp 091 | 093 | 091 | 093 | 094 | 091
Closure 073 | 0.73 | 0.79 | 0.69 | 0.66 | 0.78
NasalCoda | 0.70 | 0.67 | 0.61 | 0.76 | 0.59 | 0.72
Fricative 0.83 | 0.75 | 0.71 | 0.80 | 0.65 | 0.69
Sonorant 0.67 | 0.54 | 0.68 | 0.56 | 0.73 | 0.69

Table 2: Correlation of estimated and observed duration-Model
11, experiment 1, using weights and common vector obtained from
singular vector decomposition to predict target speaker's duration.

Speaker 1 2 3 4 5 6

Vowel 0.74 | 0.67 | 0.72 | 0.75 | 0.77 | 0.77
Burst/Asp 0.89 | 093 | 0.89 | 094 | 091 | 0.90
Closure 0.61 | 0.61 | 0.61 | 0.67 | 0.50 | 0.39
NasalCoda | 0.65 | 0.69 | 0.55 | 0.75 | 0.63 | 0.71
Fricative 082 | 076 | 0.68 | 0.80 | 0.64 | 0.65
Sonorant 075 | 047 | 058 | 0.55 | 0.72 | 0.65

Table 3: Correlation of estimated and observed duration-Model
II, experiment 2, using weights and the source speaker's coeffi-
cients to predict target speaker's duration.

in two stages: text selection and weight estimation. Assuming the
source speaker's model, the size of the training corpus for the tar-
get speaker can be reduced dramatically (nine sentences for the
present study). The small database reduces data collection and
processing time. The source speaker's model can be adapted to
the target speaker with a set of weights, which is an effective way
to capture speaker-specific characteristics.
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