A TIME-SYNCHRONOUS, TREE-BASED SEARCH STRATEGY
IN THE ACOUSTIC FAST MATCH OF AN ASYNCHRONOUS
SPEECH RECOGNITION SYSTEM

Ellen M. Eide and Lalit R. Bahl
I.B.M. T.J. Watson Research Center
P.O. Box 218 Yorktown Heights, NY 10598 U.S.A.

1 INTRODUCTION

A common tactic in large vocabulary automatic
speech recognition systems is to quickly provide short
lists of likely candidate words from the vocabulary
of several thousand possibilities. Subsequently, a de-
tailed model for each of the words in a given short
list 1s used to match that word to the acoustic signal.
The process of determining the short list, called the
fast match [1] reduces to a manageable number the
hypotheses investigated by detailed acoustic models.

The flow of our existing decoding algorithm alter-
nates between calls to the detailed match and the fast
match modules. A detailed match of a candidate word
is performed and a probability distribution of possible
ending times of that word is calculated. From this dis-
tribution a fast match computation is performed and
a list of candidate words to follow the current word
is computed. The likelihood of each of these words is
computed by the detailed match, along with the end-
time probability distribution. This distribution is then
used in the fast match computation to determine the
next set of candidate words.

In this paper, we describe a change to the flow of
the overall algorithm from one which alternates be-
tween detailed match and fast match to one which
computes all fast match candidates for an entire sen-
tence and stores them in a table accessible for look-up
by the detailed match phase which follows the FM
calculations. This change is enabled by adding arcs
from each leaf node back to root in the fast-match
tree. We use a Viterbi beam search to find the most-
likely path through the state-space; any word along a
path within a threshold of the most-likely path is in-
cluded as a fast match candidate. We have simplified
the phoneme topology from a three-state, left-to-right
model to just a single state with a self-loop, which re-
duces the number of states in the search procedure.
We enforce the desired minimum stay of three frames
in each phoneme by agglomerating three frames into a

“frame triplet” by multiplying together the probabili-
ties of each of the three frames for each phoneme.

During the asynchronous, detailed match phase of
decoding [4] when we need candidates over a particu-
lar time window, we retrieve them from the previously-
computed hypotheses lists associated with those start-
ing times. The acoustic scores returned by the fast
match are weighted by a triangular window centered
around the most-likely word boundary as determined
by the previous detailed match, combined with the
language model scores, sorted, and truncated to pro-
duce a short list of candidate words to be evaluated in
the next call to the detailed match.

2 ADVANTAGES OF THE HYBRID
ARCHITECTURE

The hybrid architecture of a synchronous fast match
and an asynchronous detailed match is more attractive
than either a fully-synchronous or fully-asynchronous
system, for reasons outlined in this section.

An asynchronous fast match was efficient for iso-
lated speech, since regions of silence were easily de-
tected and fast match computations could be reliably
restricted to speech onsets. However, in a continuous
speech domain, the same frame of speech may be in-
cluded in several fast match computations.

As an example, assume that the candidate list re-
turned by the fast match contains the words ANNE
and ANT. In the old procedure, the detailed match
would extend the word ANNE and find a non-zero
probability of ending between some times ¢; and ts.
A fast match calculation would then be performed in
search of words starting in this time region. Also as-
sume that a DM extension of the word ANT returned
a non-zero probability of ending between some times
t2 and t4 and that ¢z is between t2 and t4. The fast
match calculation performed on this start-time distri-
bution would repeat the calculations done in the FM



calculation due to the end of ANNE for all frames be-
tween t2 and ta.

This overlap, which is costly in terms of speed when
there are many words with overlapping end-time dis-
tributions, is eliminated by the synchronous search;
performing a fast match calculation on the same frame
more than once will not happen, resulting in less time
being spent in the fast match module of the decoder.

Furthermore, in the dynamic programming search,
the quality of the path history leading up to the begin-
ning of a word weights the score for that word, while
in the asynchronous search acoustic path information
is not directly represented in a particular word’s fast
match score, but is indirectly carried through the de-
tailed match. By performing the synchronous fast
match backwards in time and the detailed match for-
wards in time we are able to construct candidate lists
which consider complete paths through the utterance.

Conversely, in the detailed match phase of decod-
ing, an asynchronous search is more attractive than
a synchronous one, as it allows full word extensions
of active paths, giving rise to simple implementations
of complex whole-word modeling strategies and ngram
language models of any order.

The attractive aspects of each of these searches are
retained by using a hybrid decoding architecture.

3 SYSTEM DESCRIPTION

An established method of reducing the number of
states to be searched in the fast match procedure is to
organize the phonemic representations of the words in
the vocabulary in the form of a tree, with a common
acoustic model for each phoneme, independent of its
context; all phonemes shared from word beginning are
tied together into a single node of the tree. Traversing
the tree from the root to one of leaves spells out the
word in the vocabulary indicated at the leaf. By using
this graph for speech recognition we efficiently repre-
sent the vocabulary while maintaining constraints of
recognizing phoneme sequences that constitute words
in the vocabulary.

The work described in this paper requires convert-
ing such a fast match tree into a graph capable of
representing arbitrary sequences of words by adding
arcs which go from each leaf back to the root node.
Transition probabilities are assigned to each each arc
of the graph as 1/N where N is the number of arcs
leaving the source node. We implicitly assume a self-
loop probability of 0.5 for each node, which would scale
the transition arcs out of each node by the same fac-
tor, and therefore need not be included in the compu-
tation. Furthermore, the transition probability from

leaf to root is multiplied by the relative frequency of
occurrence of the word in English.

The FM graph is used to constrain a dynamic pro-
gramming search in which states correspond directly
to nodes in the fast match graph. We use the Viterbi
algorithm to find the most-likely path through the
state-space; any word along a path within a thresh-
old of the most-likely path is included as a fast match
candidate.

In our existing decoder, each node of the fast match
tree was expanded into a set of three states, with self-
loops omitted on the first two states. That omission
reduced greatly the number of possible paths through
the model and therefore resulted in a faster search than
a model with self-loops on each of the states as is used
in the detailed match, while enforcing a minimum stay
of three frames in each phoneme.

In this work we use a simplified, single-state with
self-loop graph topology to reduce the number of ac-
tive states relative to the previous three-state fast match
topology, thereby decreasing the time needed to per-
form the candidate search. We allow transitions only
every third frame which enables us to maintain the de-
sired three-frame minimum duration while at the same
time takes advantage of the simple graph topology.

We use a modified Viterbi search [3] to find the best
sequence of states for a test sentence, where one state
is occupied for each frame triplet in the utterance. At
any point in time 7, the score s for a node n in the
fast match tree is given by:

s(1,n) = maz;(s(t — 3,9)t(i, n))IsZ2pn (7 — 6) (1)

where t(4,n) is the transition probability associated
with the arc connecting node 7 to node n, pn(7) is
the probability of the phoneme associated with node
n occurring at time 7 as evaluated by context inde-
pendent phoneme models, and s(r — 3,4) is the score
of node i for the previous time triplet, i.e. the set of
three frames ending at time 7 — 3. We obtain context
independent models by taking as the probability of
each phoneme the maximum probability over all leaves
associated with that phoneme in the detailed match
models [2]. The maximum in equation 1 is taken over
all nodes 7 which are predecessor nodes to n as defined
by the fast match tree and are currently active, where
an “active node” is defined as a node whose score is
within a user-defined parameter D of the highest scor-
ing node at a given time.

In a forward search, for each active node we store,
in addition to its score, the time at which we exited
the root of the tree along the best path to that node.
For each active node which corresponds to a leaf of
the fast match tree, we enter the word in the list of



candidates starting at the stored most-likely starting
time of that word. Into the list of candidate scores we
enter the difference in scores between its ending state
and the best scoring node at time at which the word
ended.

The implementation of the fast match in the de-
coder takes the following steps :

Having computed a set of phoneme probabilities
for an utterance, we compute lists of candidate words
and their scores over the entire utterance using the
modified Viterbi search described above.

During the detailed match phase of decoding [4]
when we need candidates over a particular time win-
dow, we retrieve them from the previously-computed
hypotheses lists associated with those starting times.
The acoustic scores returned by the fast match are
welighted by a triangular window centered around the
most-likely word boundary as determined by the previ-
ous detailed match, combined with the language model
scores, sorted, and truncated to produce a short list
of candidate words to be evaluated in the next call to
the detailed match.

4 REVERSING DIRECTION OF
CALCULATION

One weakness of the algorithm described above is in-
herent to the Viterbi search, in which only the best
path to a given node at a given time is saved. In a for-
ward Viterbi search, where the calculation begins with
the first time triplet and progresses to the final triplet
of the utterance, only the highest scoring path through
each word is remembered. In some cases, however, the
beginning of a word is not clear; for example, when the
first of a pair of words along a given path ends with the
same phoneme which begins the second word such as
“this says,” the boundary between the two words is not
well defined. In a forward Viterbi search, the end of
the word “this” would have a good score for a number
of frames, but when the end of “says” is reached, only
the single best starting point of the word is available.
This could be a number of frames away from where
the (forward-progressing) detailed match is asking for
candidates.

The weakness of having only a single start time
for each word can be overcome by computing the fast
match candidates backwards in time. That is, we start
the computation with the final time triplet of the ut-
terance and compute toward its beginning. Reversing
the calculation requires a reversal of the fast match
tree, built by rewriting backwards the phonemic pro-
nunciation of each word and proceeding to build the

fast match tree in the normal way, but using the re-
versed spellings. The dynamic programming scores are
computed from the end to the start of the sentence,
with the paths constrained by the reversed tree. In
the case of the reversed tree, a leaf corresponds to a
word begin; when a leaf occurs in the beam search, the
associated word is entered in the list associated with
the time at which the leaf occurred. No carrying for-
ward of word-begin times is required, which results in
a slightly faster search requiring slightly less memory
than the forward case.

5 REDUCING DELAY

One weakness of the backwards calculation is the
fact that one must wait until the speaker finishes his
sentence before beginning the decoding computations.
However, if we could detect accurately specific speech
events such as silence, we could segment the utterance
into chunks of speech surrounded by silence and do
the computation on each speech chunk independently,
and thereby not be required to wait until the end of
the entire sentence to begin computing. Alternatively,
we could implement a forward-progressing fast match
which stores ends of words and is used by a backward-
going detailed match. This solves the problem of hav-
ing only the single-best path available when tracing
back to find word beginnings in a forward search, as
well as reduces delay, since we can start the backwards
detailed match at a time when the fast match is rela-
tively confident in its top candidate. This embodiment
would require a backwards language model.

6 SCORING

Unnormalized Viterbi scores cannot be used as the
fast match score, since at each time frame the scores
are multiplied with another observation probability
which causes the scores at the end of the computa-
tion to be much smaller than those at the beginning.
Several choices exist for scoring the candidates in the
beam. One is the difference of the node’s Viterbi score
from the best Viterbi score seen at that time frame.
This is a natural choice since that criterion was used
to define the beam. For example, in the case of com-
puting backwards in time, for a node at time ¢, this
method of scoring takes into account all observations
from time ¢ to the end of the utterance, but does not
consider observations from time 0 to time ¢ — 1. Thus,
if a path indicates with a high score that a word begins
at time ¢, that word will be given a high score, even if
no continuation of the path exists to time 0. Because
of this weakness, we have tested an alternative scoring



mechanism which takes into account complete paths
from 0 to the end of the utterance for each hypothe-
sis.

In the case of computing backwards in time, an al-
ternative to normalizing the scores by taking the dif-
ference from the top of the beam is to keep track of
the scores computed forwards in time by the detailed
match and multiply the score of each node in the back-
ward fast match search by the score of the root node in
the forward detailed search. This normalization pro-
cedure scores a given word hypothesis according to its
place along a complete path from start to end of the
sentence.

7 RESULTS

The time-synchronous fast match algorithm was
tested on an in-house continuous speech recognition
task. The vocabulary consisted of 20,000 words from
the business news domain. The test data consisted of
5294 words uttered by 14 speakers.

The algorithm reduced the computation time of
the fast match by approximately 88% (from a total
of 9516.3 seconds to 1130.4 seconds required for the
fast match computation on a 133MHz processor) with
approximately 6% relative increase in the word error
rate of the speech recognition system (12.90 went to

13.68).

REFERENCES

[1] L.R. Bahl, S.V. De Gennaro, P.S. Gopalakrish-
nan, R.L. Mercer. ” A Fast Approximate Acoustic
Match for Large Vocabulary Speech Recogni-
tion”, IEEE Transactions on Speech and Audio
Processing, vol. 1, no. 1,pp 59-67. January 1993.

[2] L.R. Bahl et al. “Performance of the IBM Large
Vocabulary Continuous Speech Recognition Sys-
tem on the ARPA Wall Street Journal Task.”
ICASSP 1995, vol 1, pp 41-44.

[3] G.D. Forney, Jr. “The Viterbi Algorithm,” Proc.
IEEE, vol 61, pp 268-278. 1973.

[4] P.S. Gopalakrishnan, L.R. Bahl, R.L. Mercer. “A
Tree Search Strategy for Large Vocabulary Con-
tinuous Speech Recognition.” ICASSP 1995, vol
1, pp b72-575.



