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ABSTRACT

An experiment compared the speaker recognition performance
of human listeners to that of computer algorithms/systems.
Listening protocols were developed analogous to procedures
used in the algorithm evaluation run by the U.S. National
Institute of Standards and Technology (NIST), and the same
telephone conversation data were used. For “same number”
testing, with three-second samples, listener panels and the best
algorithm had the same equal-error rate (EER) of 8%.
Listeners were better than typical algorithms. For “different
number” testing, EER’s increased but humans had a 40%
lower equal-error rate. Other observations on human listening
performance and robustness to “degradations” were made.

1. INTRODUCTION

The development of automatic speaker verification technology
has been greatly facilitated by the recent development of
uniform training and test materials and of procedures and
metrics for evaluating verification performance [1,2]. For
many, the performance goal for automatic verification is to
obtain the verification accuracy of human listeners. The 1998
NIST Speaker Recognition Evaluation [3] presented an
opportunity to examine where the automatic algorithms stand
viz. a viz. this goal and to examine how human listeners
perform given the data and the guidelines for the evaluation.
We could also compare human performance on this collection
of spontaneous, conversational telephone speech with human
performance for other data sets and testing paradigms [5,6].

The challenge of designing a paradigm analogous to the one
for evaluating computer algorithms that can be implemented
within time and cost constraints makes very evident the
differences between human and machine. The differences and
the budget influenced many of the design choices and reflect
that individuals have limited memory, easily become fatigued
and won't work efficiently 24 hours a day, even with
additional compensation.

What we have tried to uncover and report are the similarities
and differences in recognition performance by humans and
machines and the conditions under which human recognition is
more robust. And, we can report that, given three-second test
samples, listeners -- acting as a panel — do outperform
automatic algorithms.

2. TEST METHOD

2.1 The Basic Task and The Test Data for
Speaker Identification

The basic speaker recognition task is the same for both
machine and human. Performance is averaged over a set of
target speakers. For each target speaker there are training
examples, for modeling the target, and test samples. The test
sample set contains speech from the target, for measuring
detection, and speech of non-targets or foils, for measuring
false alarms

The speech data for the speaker recognition evaluation was
prepared by NIST and drawn from Switchboard II [1]. It
consists of five-minute recordings of separate sides of
telephone conversations between pairs of strangers, mediated
by a robot operator and recording system. Participants both
initiate and receive calls. Participants initiate calls from many
different phone numbers, so their voices are recorded through
a variety of microphones and channels. All the calls received
by a given participant come to the same number. Each side of
each conversation is evaluated as to its distortion, noisiness
and microphone type, e.g., electret or carbon button. One-
minute training segments and 3-second, 10-second and 30-
second test segments are extracted from the conversation
sides. The test segments were selected automatically so some,
especially the shorter ones, may contain mostly non-speech
such as laughs, snorts, loud noise or even silence.

In the evaluation of algorithms, a number of rules and
restrictions were imposed, many of which cannot be applied
equally to people and machines. Some examples: The use of
information about other test segments or about other talkers in
the test set was not allowed in evaluating a given test segment.
Knowledge of whether training and test were from the same or
different phone numbers and handset type was allowed.
Knowledge of talker sex was given; test samples were always
from a talker of the same sex as the target.

2.2 Listening Task and Test Design

Within the constraints of time and cost, the human listener
tests paralleled the algorithm evaluation as closely as possible.
The human tests used 3-second test samples and a smaller
number of talkers and test samples than for evaluating
algorithms. “Two-session” training was used: each of the two
one-minute samples was from a different call from the same



phone number. The listening task was designed to compensate
for the fact that humans do not have perfect memory of the
training materials and that it was not possible to erase their
memory of previous tests without causing undesirable damage
to the system. Listeners were trained and tested on one target
talker at a time. After 2 minutes of training on a given target,
listeners were tested on 21 3-second test samples taken from
different conversations, approximately half being from the
target and half from foils. On each trial, listeners heard the test
sample, a 3-second reminder taken from the training speech
and a repeat of the test sample. Each listener then used a 10-
button response box to record a same/different judgement with
five levels of confidence. Short tones were used to alert the
listeners to the start of each trial and to help them keep the
samples and reminders separate. After the test samples for one
target were completed, the training and tests for the next target
were presented. Every effort was made to prevent memory for
previously presented targets from influencing later
performance. Once a given target talker had been evaluated by
a listener panel, it was assumed that the particular talker was
known to the listeners, and that talker was never presented to
the same listeners as a foil in later test.

Up to eight listeners at a time were tested in a sound
attenuated room. The stimuli were presented simultaneously to
all the listeners through headphones, and the next sample was
not presented until every listener had responded. In all, there
were 65 listeners (34 females and 31 males), with each panel
hearing a total of 36 talkers (18 males and 18 females) over a
day of testing with interspersed rest periods. Male and female
talkers were tested in alternate sessions, separated by rest
periods. Each target talker was heard by approximately 16
listeners. In all, 144 target talkers, 72 males and 72 females,
were evaluated, for a total of 3024 test samples.

3. RESULTS

3.1 Individual and Combined Responses

The machine recognition tests required both a “hard” decision
as to whether a given sample was or was not from the target
talker and a similarity rating, with higher values indicating
greater similarity. The 10-button response box likewise
allowed for a hard decision (whether the selection was SAME
or DIFFERENT), and numerical values for similarity were
assigned to each of the 10 confidence levels, from O for most
confident DIFFERENT to 9 for most confident SAME. As is
to be expected with biological detection systems, there were
large individual differences in listener performance, both in
the ability to discriminate talkers and in bias (how strict or
lenient a listener was in rejecting or accepting foils). The
overall error rate for individual listeners ranged from 15% to
48%. This variability in performance was the reason for using
multiple listeners for each test sample, and our primary
interest was in determining how well listeners as a group
performed, rather than in individual decisions.

Both the need for combining individual responses and the
results of doing it are shown in the Detection Error Tradeoff
(DET) curves [4] of Fig. 1. Miss rate vs. false-alarm rate is

plotted for individual scores and for combining methods. The
DET curves were generated by NIST with the same routines
used in evaluating algorithms. Equal error rates, (EER’s) the
intersection of the DET curves with the diagonal, are given in
Table 1. The data in Fig. 1 and Table 1 are for the “All-
number” condition, i.e., not restricted to the “same-number” or
the “different-number” conditions described below.
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Figure 1. Detection Error Tradeoff (DET) plots for different
methods of combining listener responses, for “all-numbers.”

Combining Method Error Z-score
Individuals (none) 0.23 0.739
Median 0.125 1.15
Mean 0.120 1.175
Minimum Variance 0.1084 1.235
Log-Likelihood (“Cheat™) 0.1058 1.249

Table 1. Equal error rates for different combining methods,
for the “all-number” condition.

The curve in the upper right shows the uncombined, individual
responses. The circles represent the cumulative errors for each
of the 10 possible responses, in order of similarity and
cumulated over listeners and test samples. Only six circles
(connected by straight lines to improve readability) show up
because the other four are outside the range (50%) of the axes.
The intersection of this curve with the diagonal shows that the
listeners, treated individually, have a collective equal error
rate of about 23%. The other curves show the results of
different methods of combining all the responses to a given
test to get a single score or category judgement for that test.
This usually meant combining 16 responses (the experimental



design called for two panels of eight to make each judgement).
The next curve, labeled Median, was obtained by finding the
median response value. Twelve of 19 possible points (10
response values and 9 in between) are within range. The
resulting equal error rate of approximately 12.5% indicates
that combining divides the error rate in half. The curve labeled
Mean was obtained by averaging the response values. This
gave a slight improvement over computing the median.
Averaging 16 responses gives many numerical values, and the
individual points are not circled. Means will be used for the
comparisons with computer algorithms and the analysis of
robustness. The curve for “cheating” and the remaining table
entries, which show that crime doesn't pay very well, were
obtained by “optimally” calibrating each of the 10 responses
for each individual listener, as explained next.

Different people use the response scales differently, and it
makes sense to calibrate each listener before combining the
scores. However, as the listeners' responses are also influenced
by what is in the stimulus set, this calibration should be done
using an independent stimulus set. Not having enough data to
do this, we resorted to a cheating experiment in which the
same data set was used for both calibration and evaluation.
Two “optimal” calibrations were attempted and the results are
shown in Table 1. In one experiment, each response value was
a listener-specific log-likelihood. This was computed as the
logarithm of the quotient of the frequency of a given response
for target samples divided by the frequency for foil samples.
This technique gave the “Cheat” DET curve in Fig. 1. In the
other experiment, each response value was the one that would
minimize the mean square error given that a target should
receive a score of 1; a foil, -1. Table 1 shows that a cheating
optimization of response values gives only 1.6% absolute
(13% relative) lowering of the equal error rates. This is an
upper bound of what might be achieved by an honest
calibration. It vindicates the use of the integers 0 to 9 as an
accurate characterization of listeners’ perceptual space.

3.2. Human vs. Machine

The first comparison of listeners to algorithms is made for the
“same number” condition, which was the principal condition
used in the 1998 evaluation of algorithms. In this condition,
the error rates are computed from a subset of the test samples:
the only target test samples used are from conversations using
the same number as the training samples and the foil test
samples used are those from the same type of handset. A
comparison of listeners with the best performing computer
algorithm and two other “typical” algorithms is shown in Fig.
2. It can be seen that human recognition was at least as good
as the best system and noticeably better than the typical
systems that participated in the evaluation.

The relative robustness of listener responses under changes in
signal characteristics is illustrated by the comparison of
“same-number” to “different-number” performance in Fig. 3.
In the “different-number” analysis condition,” the target test
samples are from different phone numbers than the training
and there was no restriction on the handset type for the foil
samples. Both humans and algorithms did more poorly when

the test and training data were from different numbers than
from the same number, but the loss was greater for algorithms
than for humans.
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Figure 2. DET plots comparing human performance to the
best and two typical algorithms (same-numbers data).
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Figure 3. DET plots comparing human listeners to two
typical algorithms, for “same-number” vs. “different number”.

For this data set, unlike most algorithm results and several
previous human recognition studies [5,6], humans recognized
the female talkers better than they did the male talkers. An
analysis by listener sex showed essentially the same pattern, in
that both male and female listeners recognized the female



talkers better. Interesting as it would be to find same-
sex/opposite sex effects, this suggests that the 72 female
talkers were in fact more easily recognized than the 72 male
talkers were. In many earlier studies, the talker sets were so
small (5-10 male and female talkers) that differences in
recognition could as easily be due to talker selection as to
talker sex. Most studies of human speaker recognition have
been conducted with read speech (sentences, words, single
vowels) and not with spontaneous speech. Table 2 shows the
results of one study [5] of 10 male and 10 female talkers
reading sentences compared with individual performance in
the present study. Recognition with controlled text is
considerably higher than with spontaneous speech.

Read Sentences | Telephone Speech

Ave S.E. Ave. S.E.
Male talkers 94.7% 0.63% | 76.2% 0.70%
Female talkers 85.0% 0.80% | 77.5% 0.80%

Table 2. Human speaker-recognition average percentage
correct and standard error (S.E.) as a function of the type of
material and the sex of the talker.

Previous work [7,8] using multi-dimensional scaling (MDS) to
relate perceived talker distances to objective measures of the
speech signal suggests that, with a three dimensional scaling
solution, two of the dimensions seem to be related to
measurable acoustic parameters of the speech signal, but the
third dimension is not. The combination of target talkers and
test samples in the experimental design was selected in a way
that allowed us to collect pairwise similarity data for a subset
of 24 male and 24 female talkers. An exploratory MDS
analysis (3 dimensions) for these talkers, comparing human
distance data with one of the machine algorithms, found
significant correlation between human and machine for two of
the dimensions, and not for the for the third. People often
recognize talkers by their speech habits, accent, choice of
vocabulary, etc. Although modern speech recognition
algorithms are getting better at detecting variations in
pronunciation, these cues are still harder for machines to
detect than for people.

4. CONCLUSIONS

Human listeners show tremendous individual variability, and
we explored ways of combining listener data to arrive at a
group decision. We found that the group mean worked well,
and the human results were very competitive with the best
computer algorithms in the same handset condition. When
different handsets/phone numbers were used, human
performance degraded somewhat, but not as badly as
algorithm performance. Both human and algorithm
performance also went down when the signal was degraded by
background noise, crosstalk, poor channel conditions, etc., but
again the humans were more robust for the worst conditions.
Unlike the computer algorithms, humans performed better
with female than with male voices.

The greater human robustness to certain degradations can be
explained in part by the fact that humans depend heavily on
speech habits (pronunciation, word choice, characteristic
laughs, etc.) when recognizing talkers. Some machine
recognition systems use word recognition to detect variations
in pronunciation. More exploitation of the cues used by
humans may be the next step to additional progress.
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