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ABSTRACT 

Over the past few years: the “sums-of-products” approach 

has emerged as one of the most promising avenues to ac- 

count for contextual influences on phoneme duration. This 

approach is generally applied after log-transforming the 

durations. This paper presents empirical and theoretical 
evidence which suggests that this t.ransformation is not op- 

timal. A promising alternative solution is proposed, based 

on a root sinusoidal function. Preliminary experimental re- 

sults obtained on over 50.000 phonemes in varied prosodic 

contexts show that this transformation recluces the unex- 

plained deviations in the data by 32.2%. 

1. INTRODUCTION 

In natural speech, durations of phonetic segments strongly 

depend on contextual factors such as the identities of sur- 

rounding segments, stress, accent, and phrase boundaries 

(cf., e.g., [l]). For synthetic speech to sound natural, these 

duration patterns must be closely reproduced. Two ap- 

proaches have been followed for duration prediction: (i) 

general classification techniques, such as decision trees and 

neural networks [2]! and (ii) “sums-of-product.s” (SOP) meth- 

ods, based on multiple linear regression in either linear or 

log domain [3]. 

These two approaches differ in two key aspects: the amount 

of linguistic knowledge required, and the behavior of the 

model in situations not encountered during t,raining. Gen- 

eral classification techniques are largely data-driven and 

unsupervised, and therefore require a large amount of train- 

ing data. Furthermore, they cope with never-seen circum- 

stances by using coarser representations, thus sacrificing 

resolution. In contrast, SOP models are supervised on the 
basis of linguistic knowledge, which makes them more ro- 

bust to missing data. In addition, they predict durations 

for unseen contexts through interpolation, by making use 

of the ordered structure uncovered during analysis of the 

data [l]. Given the typical size of training corpora cur- 

rently available, the second approach tends to outperform 

the first one, particularly when cross-corpus evaluation is 

considered [4]. 

When SOP models are applied in the linear domain, they 

lead to various derivatives of the additive model originally 

proposed by Klatt [5]. When they are applied in the log do- 

main, they lead to multiplicative models such as described 

in [l]. The evidence appears to indicate that the latter 

perform better than the former. Two reasons why this 

might be the case are: (i) the distributions tend to be less 

skewed after the log transformation; and (ii) the fractional 

approach underlying multiplicative models is better suited 

for small durations. There is, however, no evidence that 

the log transformation is optimal. Rather than eliminat- 

ing skewness in the data, it tends to merely reduce it (and 

reverse its sign). And while it is true that contexts such as 

phrase-final position are likely to lengthen long phonemes 

more than short phonemes, there is no a priori reason for 

all factors to be strictly multiplicative across all durations. 

This paper presents empirical and theoretical evidence sup- 

porting an alternative transformation which results in bet- 

ter models. The next section motivates a closer look at the 

assumptions underlying the SOP approach. Section 3 ex- 

amines the theoretical basis for an alternative formalism. 

In Section 4, we propose a new transformation based on 

a sinusoidal function. Finally, Section 5 reports on a se- 

ries of experimental results illustrating the benefits of the 

proposed framework. 

2. EMPIRICAL MOTIVATION 

This work arose from evaluating the SOP approach on a 

large corpus collected at Apple Computer in the summer 

of 1996. This corpus systematically represents the known 

contextual factors influencing prosodic phonetic structure 

for a canonical speaking style. It contains all possible syl- 

lable types as defined by a comprehensive grammar based 

on phoneme classes. There is at least one instance of each 

syllable with each of no pitch accent, L+H*, and H’, in 

each of prenuclear. intermediate-phrase-nuclear, or phrase- 

final nuclear position [6]. Furthermore, there is at least 

one instance of each accented syllable separated from the 

end of its word, the following accent, and t.he end of the 

phrase, by each of 0, 1, 2, 3, and 4 intervening syllables. 

In addition, all of the instances of every syllable type sys- 

tematically samples from all the phonemes in each class of 

each of the syllable component. The corpus was spoken 
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Fig. 1. Effects of Adding More Regression Parameters. 

by a linguistically-trained speaker, with close monitoring 

of the intended intonation. 

ln the experiments, the phonemic alphabet had size 40, 

and the portion of the corpus considered comprised 50,797 

observations. Thus, on the average, there were about 1270 

observations per phoneme. Phoneme boundaries were au- 

tomatically aligned using a speaker-dependent version of 

the Apple large vocabulary continuous speech recognition 

system. The SOP approach was implemented via weighted 

least-squares multiple regression. as implemented in the 

Splus ~3.2 software package. The standard log transforma- 

tion was used. Across the entire dataset, t,his model left 

15.2% of the standard deviation in the durations unexpl- 

ained.’ This overall fit is comparable to prior results re- 

ported in the literature. 

Close analysis of the residuals showed that they were not 

spread evenly throughout the data range. Specifically, long 

durations tended to be underestimated and short durations 

overestimated. This is of course a common modeling phe- 

nomenon, which typically becomes less ancl less severe as 
the models acquire more independent variables represent- 

ing higher-order interactions between c0nt.ext.s. 

Fig. 1 illustrates this error reduction for a subset of the 

above data (consisting of the four unvoiced fricatives). The 

predicted and observed values have each been sorted in as- 

cending order, and the two distributions plotted against 

each other. If t,he predictions were perfecl, all the points 

would lie on the grey “y = I” line. Instead. the grey filled 

circles represent the predictions from a simple SOP model 

with about 20 parameters, which accounts for 32.6% of the 

total standard deviation. The black hollow circles repre- 
sent a more complex model with about 200 parameters, 

which accounts for 87.2%# of the deviation. The additional 

parameters allow the model to more closely predict the 

‘In this paper we report the fit on the complete corpus, rather 
than setting aside a test subset. In our experiments we have 
found the same patterns as those reported hcrc, when we eval- 
uate the models with a train/test subdivision of the data. 

more extreme observations in the data. However, the over- 

all shape of the plot suggests that the overestimation of 

short durations and underestimation of long durations is 

a structural patt,ern over a wide range of regression equa- 

tions. Moreover, this observation is consistent across the 

entire dataset. 

There are two possible (non mutually exclusive) approaches 

to reducing these erroneous duration predictions. The tra- 

ditional approach, as illustrated in Fig. 1, is to add more 

independent variables to the regression equation. However, 

each parameter added to the more complex equation repre- 

sents only one particular higher-order interaction between 

factors, and thus only one specific subset of the data. As 

more interaction terms are added, they are trained on fewer 

and fewer points and account for smaller and smaller par- 

ticular subsets of the outliers. At the extreme, this raises 

the issue of parameter reliability. as well as generalization 

to new combinations of context. 

The other approach is to first make sure the raw durations 

are transformed appropriately, given the structural nature 

of the pattern observed in the residuals. This led us to 

re-examine the underlying assumptions of the SOP model. 

3. THEORETICAL FRAMEWORK 

The origin of the SOP approach can be traced to the “ax- 

iomatic measurement” theorem [7], as applied to duration 

data. This theorem states that under certain conditions 

the duration function D can be described by the general- 

ized additive model, given by: 

Z=l J=1 

where f, (i = 1,. . , N) represents the ith contextual fac- 

tor influencing D, Mi is the number of values that fZ can 

take, 0i,J is the factor scale corresponding to the jth value 

of factor f,, denoted by f,(j), and F is an unknown mono- 

tonically increasing transformation. Thus, F(z) = 1: cor- 

responds to the additive case and F(z) = log(z) corre- 

sponds to the multiplicative case. As mentioned before, 

F(z) = log(z) is normally used. 

The conditions mentioned above have to do with factor 

independence. Specifically, one can construct a function 

F and a set of factor scales u,,~ such that (1) holds only 

ifthe factors f,, j = l,..., N? exhibit all possible forms 

of independence, i.e., only if joint independence holds for 

all subsets of 2,3,. . . , N factors. Clearly, this is not go- 

ing to be the case for duration data. For example, accent 

and phrasal position interact in their influence on vowel 

duration, i.e., these factors are not independent. The jus- 

tification for applying (1) anyway is, generally, that such 

interactions tend to be well-behaved, in that their effects 
are amplificatory, rather than reversed or otherwise per- 

muted [I]. The “regular patterns of amplificatory inter- 

actions,” in van Santen’s words, make it “quite plausible 

that Some sums-of-products model will fit the [appropri- 

ately transformed] durations” [l] (emphasis ours). 
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Violation of the joint independence assumption, however, 

may substantially complicate the search for the transfor- 

mation F. In particular, the optimal transformation F 
may no longer be strictly increasing, opening up the possi- 

bility of inflection points, or even discontinuities. In other 

words, it is worth revisiting the likely behavior of the trans- 

formation in the face of amplificatory interactions. 

4. NEW TRANSFORMATION 

For simplicity, in the generalized additive model (1) we 

use a common set of fact.ors across 15 classes of phonemes. 

This common set includes well known fact.ors such as ac- 

cent, preceding and following phoneme identiDy, and others 

reported in the literature. The data of Fig. 1 suggests that 

the interactions mentioned above are only amplificatory for 

long durations. When durations are short, the interactions 

seem to exert the opposite influence. 

As a result, we opted to look for a transformation F with 

opposite properties at t,he two ends of the range. In the 

first approximation, this entails at least one inflection point 

in F. This observation led us t,o consider the sinusoidal 

function: 

F(x) = {sin[%(G)a]}z+6, 

where A and II denote t,he minimum and maximum dura- 
tions observed in the training data, and the parameters (Y 

and ,B control t.he shape of the transformation. Specifically, 

these parameters control (i) the position of the inflection 

point within the range of durations observed, and (ii) the 

amount of shrinking/expansion which happens on either 

side. 

Fig. 2 and 3 depict the shape of the funct.ion (2) for var- 

ious values of Q and i3. It can be seen from Fig. 2 that 

with values (Y < 1, the curve moves to the left, which 

leads to an expansion of the shorter durations and a com- 

pression of the longer durations. On the other hand, with 

values (Y > 1 the curve moves to the right. which means 
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Fig. 3. Slope Control at Inflection Point. 

the shorter durations shrink and the longer durations be- 

come more separated. Furthermore, the two parameters 

can be independently adjusted to also control the slope of 

the function at the inflection point. As Fig. 3 illustrates, 

this slope can be reduced by using a relatively large value 

of (Y and a relatively small value of p, or increased by using 

the opposite combination. 

From our data, it also seemed that the residuals are dispro- 

portionately greater in long durations than in short dura- 

tions (cf. Fig. 1). Thus, relatively speaking, the transfor- 

mation should impact long durations more than short du- 

rations. It it important to note, however, that the optimal 

values of the parameters (Y and ,3 depend on the phoneme 

(or class) identity, since the shape of the function is tied to 

the duration distributions observed in the training data. 

In the experiments described below, the procedure we fol- 

lowed to generate these parameters was to iteratively ad- 

just CY and p for each phoneme class, using the goodness of 

fit of the subsequent regression as the criterion. It would 

be straightforward to automate this procedure using, e.g., 

standard gradient descent algorithms. As it turns out, we 

have found that the values (Y = 0.8 and p = 0 are adequate 

for a wide range of phonemes/classes. For this reason, we 
call the resulting transformation the root sinusoidal trans- 

formation. 

5. EXPERIMENTAL RESULTS 

The baseline result (15.2% unexplained) was obtained us- 

ing the standard multiplicative model, as described in Sec- 

tion 2. The same independent, variables were then re- 

gressed against the root sinusoidal transformation of the 

raw durations. In both cases! the SOP coefficients (af- 

ter the appropriate transformation) were estimated using 

weighted least squares as implemented in the Splus ~3.2 

software package. 

Applying the root sinusoidal transformation left only 10.3% 

of the standard deviation unexplained, which corresponds 
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to a reduction of 32.2% in the proportion not accounted 

for by the model. 

The above experiments were then repeated with a range 

of different numbers of equation parameters, representing 

different choices of factors and interaction terms, t.o see if 

the result was somehow linked to the part,ic:ular regression 

model selected. Fig. 4 reports the outcome, in terms of the 

percentage of standard deviation explained as a function of 

the total number of parameters in the modeling (including 

the parameters required for the transformation). It can 

be seen t,hat t,he root sinusoidal transformation (filled tri- 

angles) is consistently superior to the log transformation 

(hollow circles) across the entire range of parameters con- 

sidered. 

A consequence of Fig. 4 is that the root sinusoidal trans- 

formation provides for a more parsimonious representation 

of the regular patterns in the observed data. Specifically, 

for a given level of performance, the root sinusoidal ap- 

proach allows the underlying SOP expression to comprise 

approximately half the number of paramet,ers. For exam- 
ple, to explain 85% of the standard deviation in the dura- 

tions would require less than 2500 parameters with a root 

sinusoidal transformat.ion, but slightly more than 4500 pa- 

rameters with a log transformation. 

6. CONCLUSIONS 

This paper has presented both theoretical and preliminary 

empirical evidence for the use of a root sinusoidal trans- 

formation in the well-known sums-of-products approach to 

duration modeling. Compared to the standard log trans- 

formation: this new transformation reduced the propor- 

tion of the standard deviation unexplained by more than 

30%. Alternatively, for a given level of performance, the 

new transformation roughly halved the required number of 
equation parameters. 

greater quantity of both shorter and longer phonemes that 

it is able to generate. Short phonemes are difficult to syn- 

thesize because they are typically associated with under- 

shoot of articulatory targets. Mere warping (in the time 

domain) of units that sound appropriate with longer du- 

rations is likely to result in unnaturally sudden spectral 

transitions. Similarly, the longer durations produced by 

this model will require careful voice processing to avoid 

unnaturally salient steady states. Consequently, we believe 

that as duration models improve, there will be greater need 

for articulatory approaches to voice generation. 

In future work, the parameters of the transformation will 

be automatically optimized, and the different transforma- 

tions will be compared by calculating the unexplained de- 

viations in the raw data rather than in the transformed 

domain. 
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This improved duration model has implications for the 

voice generation in a speech synthesizer, because of the 


