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ABSTRACT

Input level fusion and output level fusion methods are
compared for fusing Mel-frequency Cepstral Coefficients with
their corresponding delta coefficients. A 49 speaker subset of
the King database is used under wideband and telephone
conditions. The best input level fusion system is more
computationally complex than the output level fusion system.
Both input and output fusion systems were able to outperform
the best purely MFCC based system for wideband data. For
King telephone data, only the output level fusion based system
was able to outperform the best purely MFCC based system.
Further experiments using NIST’96 data under matched and
mismatched conditions were also performed. Provided it was
well tuned, we found that the output level fused system always
outperformed the input level fused system under all
experimental conditions.

1. INTRODUCTION

Traditionally closed-set Speaker Identification (SI) systems use
LPC or FFT derived spectral coefficients as input features.
Transitional spectral representations such as first order
differences of LPC or FFT derived Cepstral coefficients may
provide additional uncorrelated information for SI. First order
delta coefficients [1] have been investigated for text-
independent SI and in that study it was found that the LPC-
derived Cepstral coefficients and first order delta coefficients
could be linearly combined at the classifier output (output level
fusion) to improve performance for telephone speech [2].
Results obtained in this study were believed to be equally
applicable to filterbank and FFT derived cepstral coefficients.
Appending the delta coefficients to the cepstral coefficients at
the classifier input (input level fusion) [3][5][6] has been
recently investigated and found to improve SI performance in
telephone speech.

In this paper, we investigate and compare input level fusion and
output level fusion of Mel-Frequency warped FFT derived
Cepstral Coefficients (MFCC) and their corresponding delta
coefficients (DeltaMFCC) in the framework of text-independent
SI. The SI system used is based on Gaussian Mixture Models
(GMMs) [6]. A GMM based SI system is chosen because it is
well known and has previously been used with input fusion
[3][6]. The investigation is carried out mainly on the KING
database but some supplementary experiments are also
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performed using the 1996 NIST Speaker Recognition
Evaluation database. The main foci of the comparison are SI
system computational complexity, and SI.

2. THE SPEAKER IDENTIFICATION
SYSTEM

The SI system used for this study is based on Gaussian Mixture
Model [7]. The concept of a GMM is to model a target
Probability Density Function (PDF) with multiple weighted
gaussian component PDFs (typically referred to as mixtures).
The probability of a D dimensional test vector X belonging to
target model A is given by:
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where w, is the weight of the ith gaussian component PDF and
g(,l;,fi,zi) is the likelihood of y belonging to gaussian
component PDF i. The value of the latter is given by:
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where iPi and Y;are the mean vector and covariance matrix of

gaussian component PDF i. The number of component PDFs is
referred to as the order of the model M. In this study we use
nodal, diagonal covariance matrices in line with [6]. Given S
sample training vectors, the parameters of a GMM are generally
estimated by iterating through the Expectation-Maximisation
(EM) algorithm [4] for [ iterations, it is relativly simple to show
that the computational complexity of GMM training is
O(SXDxMxI) and GMM testing is O(SXDxM) as S,D.,M and [
become large. In this study GMM training was terminated when
either a fixed number of iterations Ifixed was reached or when
the change in training between two consecutive iterations i-1 an
i for 1< i < Ifixed, was less than a set threshold Aeshresh. In an
input level fusion based SI system, the two parameter types
MFCC and DeltaMFCC are simply concatenated, thus
increasing D. One GMM model Ai (i=1,2,...,N) is then trained
for each of the N speakers. For a given test sequence of T
vectors, the input level fusion SI system computes a speaker
identity using:

T
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In output fusion, for each speaker, one GMM is trained and
tested solely with DeltaMFCC coefficients and a second GMM



solely with MFCC coefficients. For each test vector, the GMM
outputs (in the form of log-likelihoods) are equalised by their
corresponding averages of pooled intraspeaker log-likelihoods

] Mrcc and ] AMFcc over the whole test sequence and then

linearly combined on a frame-by-frame basis as in [2]. The
output level fusion based SI system thus computes a speaker
identity:
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where 0 < a < 1. Fusing the outputs increases the number of
GMMs (two for every speaker). The estimation of GMM model
parameters may be differently affected by the two approaches
(even for diagonal covariance matrices).

3. SPEECH PARAMETERISATION

In this study we use 15 dimensional Mel-Frequency FFT
derived Cepstral Coefficients and their corresponding Delta
Coefficients [1] as input features. MFCC Coefficients were
derived with a frame size of 32ms and a frame advance of
10ms. DeltaMFCC are calculated using the formula:
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where d; is a delta coefficient at time ¢ computed from the static
coefficients ¢ to cr+k . The value of K determines the size of
the “window” of static coefficients used. Except for results in
Section 4.5 the value of K used is always 5.

Silence and low energy frames are removed from all speech.
Cepstral mean subtraction is performed on the telephone speech
only. The telephone speech is also bandlimited in the range
300-3400Hz.

4. EXPERIMENTS ON KING DATA

Experiments speaker have been carried out using the 49
speakers of the King database [8] which have exactly 10
recording sessions per speaker for both the wideband WB
(clean speech) and narrowband NB (telephone) speech
portions. The first 5 recording sessions are recorded at
approximately 1 week intervals and the others at approximately
1 month intervals. The first session for each speaker was used
for GMM training and the other 9 sessions for testing.

Test speech for each session was divided into overlapping 5s
test segments with a 10ms frame advance. Silence was removed
after this division of the test speech. In total 1756234 test
segments are created this way. After silence removal the

average duration of the test segments was 3.5s and 2.2s for the
WB and NB portions respectively. The accuracy of our SI
systems is the percentage of test segments correctly identified.

4.1. Pure MFCC and DeltaMFCC
Optimisation

To optimise the purely MFCC and DeltaMFCC based SI
systems required for the output fused approach we trained SI
systems using GMMs with model order M=1...60 inclusive. For
each value of M, GMM were trained with one of 4 training
conditions (Iﬂxgd=25 and Ae[hreshzo.oos, Iflxed=40 and
Ae[hreshzo.ooos, Iﬁxgd:80 and Ae[hreshzo.oooos, Iﬂxgd=200
and Aethresh=0.000005). For the remainder of this paper we will
simply refer to each training condition by its Ifixed value. So
when we refer to Ifixed=25 we also mean Aerhresh=0.005.

To determine the optimum SI system we chose the system
where further increasing M or Ifixed , resulted in less than 0.1%
performance improvement. Table 1. shows the optimum SI
system parameters. The actual average number of iterations
used to train each of the GMMs are also shown.

Data | Param. Type | M | Ifixed |Avg.I |Sys. Acc. (%)

WB | MFCC 30 |80 77 65.0
DeltaMFCC |20 | 25 12 45.9

NB | MFCC 50 | 80 78 30.9
DeltaMFCC | 10 |40 26 24.0

Table 1: Optimum system parameters for King data.

During the optimisation process it was found that for the
narrowband data a purely DeltaMFCC based system had
comparable perfomance with a purely MFCC based system
when the value of M was between 3 to 10 inclusive. With this
exception, it appears that the purely MFCC based system
always performs better than the purely DeltaMFCC based
system for the same model order. These results are shown in
Figure 1 for Ifixed =200 but they also hold for the other three
values of Ifixed.
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Figure 1: Accuracy vs the GMM model order (Ifixed =200) for
the King data.



4.2. Optimising the Input Level Fusion
System

To optimise the input level fusion system, the same was used
with M in the range 30 to 90. The results are shown in Table 2.

Data | M Ifixed Avg. 1 Sys. Acc. (%)
WB 50 | 200 200 66.2
NB 50 | 200 173 27.1

Table 2: Optimum Input level fusion system
parameters for King data

It is interesting to note that the optimum input level fusion
system (shown in Table 2) was unable to outperform the
optimum MFCC based system for the narrowband data under
the available training conditions. This appears to be contrary to
results obtained by others using a 16 speaker subset of
narrowband speech from the King database [6].
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Figure 2: Output level fusion perfomance as a function of o

4.3. Optimising the Output Level Fusion
System

Choosing an output level fusion system using the optimum
MFCC and DeltaMFCC SI systems from Section 4.2 resulted in
peak accuracies of 68.0% and 32.2% for wideband and
narrowband data respectively with the optimum value of =0.8.
These systems are chosen as our “optimal” output fusion
systems. Output level fusion performance as a function of « for
a number of systems from Section 4. is shown in Figure 2.
From the narrowband results of Figure 2 it can be seen that a
GMM based system needs o somewhat greater than the 0.5
required for similar Vector Quantisation based SI systems [2].

It appears that if the model order is sufficiently close to the
optimum, output fusion with DeltaMFCC does not improve the
performance much. However, for smaller model orders (which
are more aftractive in terms of computational and storage
requirements) a fused system gives better accuracy and there is
an optimal linear combination for each order.

4.4. Computational Complexity

Let the complexity of training an SI system with D=1,M=1 and
I=1 be equal to 1 unit/frame and the complexity of testing an SI
system with D=1,M=1 and /=1 be 1 te_unit/frame (where
prefix te denotes testing). Table 3 shows that the training
complexity of the output level fusion approach is approximately
4 times more complex at our chosen optimums for the wideband
data and about 2 times more complex for the narrowband data.
Testing complexities are the same as shown in Table 3 except
that they are in terms of te_units/sample.

D*M*I Complexity
(optimal) units/frame
WB input level fusion |[15%50%*200 150000
WB output level fusion [15#(30%77+20%12) 38250
NB input level fusion |15%50%173 129750
NB output level fusion [15%(50*78+10%26) 62400

Table 3: Training complexity for the “optimum” fusion
systems.

K M Ifixed | Avg.1 Sys. Acc. (%)
) o5 40 34 46.4
3 20 80 68 479
4 20 40 33 46.5
5 20 25 12 45.9

Table 4: Optimal DeltaMFCC based SI systems
conhiguration and performance tor K from 2 to 5 inclusive.



4.5. Window Size

The accuracy may also depend on the “window” size, K, used to
compute the DeltaMFCC from MFCC. A study similar to the
one in [2] was proposed for the wideband data. The optimum
system for each K was found in the same fashion as for K=5 in
section 4.2. The results are shown in Table 4. The optimal value
of Kis 3.

5. EXPERIMENTS ON NIST’96 SPEAKER
RECOGNITION SPEECH DATA

As a final study the two fusion approaches are compared on
NIST’s 1996 Speaker Recognition Evaluation database under
various telephone handset conditions. In the our study the
development data consisting of 43 male and 45 female speakers
is used. Training is performed using approximately the same
amount of speech (on average 30s after silence removal, which
was approximately 45s prior to silence removal) as was used for
the King narrowband experiments. The 30s test sessions present
were used for test data. The test data was divided up into 5s test
segments in the same fashion as for the prior experiments on
King (939966 test segments in total). SI input and output level
fusion systems with identical configuration as in the NB data
sections of Tables 1&2 are used.
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Figure 3: 88 speaker NIST 1996 development data SI accuracy.

The following three experimental conditions are evaluated: 1)
missmatched handsets, 2 matched handsets and 3) mixed
handsets. For the missmatched handset case training data is
taken from handset 1 (session 1a) and tested with handset 2 and
vice versa. In the matched handset case training and testing data
from the same handset type are used. For the mixed handset
experiments 50% of the training data was taken from each
handset condition and the testing data from both handsets was
used. The results of the experiments are shown in Figure 3.

Under all conditions it was possible to find an o for which
output fusion outperformed the purely MFCC based system.
The input level fused system was unable to outperform the
purely MFCC based system for this dataset. It should be noted
that if =0.8 is chosen from our previous study then the output
level fused system performed slightly worse than the purely
MFCC based system for the missmatched condition case.

6. CONCLUSIONS

In all experiments carried output level fusion system always out
performed the purely MFCC or DeltaMFCC based systems. In
our experiments it was not possible to construct an input level
fusion based system which could outperform the best purely
MFCC based system for the telephone data used. This is
contrary to results reported in the literature [6][5] and the cause
of this may need be investigated in the future. Theoretically an
input level fusion system should be able to classify better than
each individual system if there is extra information. In practise,
classifiers with input level fusion may not converge to “true”
optimal states with limited training. Perhaps the higher
dimensional input level fusion systems were better able to
converge in these other studies due to the larger amounts of
training data used by those researchers.

It may be necessary to recompute optimal o values for when
migrating to different experimental conditions. Investigations
into the information content and separability properties of the
two parameter sets and their relationship to classifier
performance will yield more insight into the experimental
results presented.
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