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ABSTRACT

This paper presents a novel algorithm which generates
three-dimensional face point trajectories for a given speech
file with or without its text. The proposed algorithm first
employs an off-line training phase. In this phase, recorded
face point trajectories along with their speech data and
phonetic labels are used to generate phonetic codebooks.
These codebooks consist of both acoustic and visual fea-
tures. Acoustics are represented by Line spectral frequen-
cies (L.SF), and face points are represented with their prin-
cipal components (PC). During the synthesis stage, speech
input is rated in terms of its similarity to the codebook
entries. Based on the similarity, each codebook entry is
assigned a weighting coefficient. If the phonetic informa-
tion about the test speech is available, this is utilized in
restricting the codebook search to only several codebook
entries which are visually closest to the current phoneme
(a visual phoneme similarity matrix is generated for this
purpose). Then these weights are used to synthesize the
principal components of the face point trajectory. The per-
formance of the algorithm is tested on held-out data, and
the synthesized face point trajectories showed a correlation
of 0.73 with true face point trajectories.

1. INTRODUCTION

There has been a significant interest in the area of face
synthesis recently. This topic has numerous applications
including film dubbing, computer-based language instruc-
tion, cartoon character animation, multimedia entertain-
ment, etc. There is a large effort in developing autonomous
software agents that can communicate with humans using
speech, facial expression, gestures, and intonation. Katashi
and Akikazu [6] employed animated facial expressions in
a spoken dialogue system. Other researchers [3, 4]) used
various forms of visual agents animating gestures, intona-
tion, and head movements. Lip synching is another ap-
plication of wide interest. Video Rewrite system [5] uses
existing footage to create automatically new video of a per-
son mouthing words that she did not speak in the original
footage.

In this study, we propose a new algorithm to synthesize
three dimensional face point trajectories corresponding to
a novel utterance. The general algorithm does not require
any text input. However, the performance of the algorithm
significantly improves if phonetic information is known a
priori. Therefore, throughout this paper the algorithm will
be described assuming phonetic information is available. Tt
will be described in the end how the proposed algorithm

can be to the case where phonetic information is not avail-
able. The general outline of the paper is as follows. Section
2 describes the proposed face point trajectory synthesis al-
gorithm. In this section, the formulation and automatic
generation of a novel visual phoneme similarity matrix is
described as well. Section 3 presents the simulations and
performance evaluation. Finally Section 4 discusses the re-
sults and future directions.

2. ALGORITHM DESCRIPTION

The face synthesis algorithm proposed in this paper is an
extension of the STASC voice transformation algorithm
which is described in [1]. The flowchart of the proposed
face synthesis algorithm is shown in Figure 1. The algo-
rithm requires two on-line inputs: 1) a speech file, ii) its
corresponding phoneme sequence. It also requires two ad-
ditional inputs which are generated prior to face synthesis
during the training stage: i) an audio-visual codebook, ii)
a visual phoneme similarity matrix. First, we will explain
how the codebook, and the visual phoneme similarity ma-
trix are generated.

2.1. Audio-Visual Codebook Generation

For the data collection, first synchronized speech and face
point trajectories must be recorded from a subject. For this
study the point trajectories were recorded using a multi-
camera triangulation system yielding 60 samples/sec at a
spatial resolution of .254 mm in X, Y, and Z. In the pilot
study reported here, 54 points on and around the face were
recorded while a single subject uttered approximately 300
TIMIT sentences selected to provide the richest possible
phonetic coverage. Unfortunately, tongue movement was
not included in the dataset. Speech and EGG (Glottal En-
terprises) were also digitized via a DAT recorder at 48kHz,
then later digitally down-sampled to 16kHz for more com-
pact storage. In order to model the acoustic and visual fea-
tures that correspond to the subject talker an audio-visual
codebook is used.

Acoustic features used in the codebook are line spectral
frequencies (L.SF) which provide a compact representation
of the speech signal. They have a number of nice properties
which make them attractive among speech researchers es-
pecially in the speech coding area. The relation of LSFs to
visual features have been investigated by Yehia et. al. [7].
They found that 91% of the total variance observed in the
orofacial data was accounted for by LSFs.

The visual features are principal components of 162 di-
mensional face point parameter vector. The principal com-
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Figure 1: Flow-diagram of the proposed face synthesis
algorithm.

ponents can be obtained using the Karhunen-Loeve trans-
formation technique. Since the movements of points on the
face are highly correlated, a significant dimensionality re-
duction can be achieved with minor distortion. Principal
components have been used for various applications in im-
age processing and face animation [5].

FEach codebook entry in the audio-visual codebook cor-
responds to a certain context and it consists of an acoustic
feature vector, and a visual feature vector. Associated with
each specific context there are 5 codewords corresponding
to uniformly spaced locations in time across the duration of
the phoneme. The audio-visual codebook entries are gen-
erated as follows. First, the speech data is segmented into
phonemes. Next, each phoneme is tagged with a symbol
which we refer to as “context-phone” which represents the
left and right context of the phoneme. After the data is
tagged this way, each phoneme is labeled with 5 uniformly
spaced time locations. The acoustic and visual features cor-
responding to those 5 locations are then appended to the
audio-visual codebook.

2.2. Automatic Generation of Visual Phoneme
Similarity Matrix

Since in practice the training data will not include all pos-
sible context-phones, we need a way of associating unseen
context-phones with the audio-visual codebook. In this pa-
per, a novel procedure for the automatic selection of closest
context-phone is developed. The criterion that we chose
for visual similarity of phonemes is based on Euclidean dis-

Audio-Visual
Codebook

tance of principal components of face data. Therefore, ini-
tially an average principal component vector is estimated
for each phoneme.
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where K represents the total number of phonemes present
in the language, T} represents the number of tokens for the
kt* phoneme, and Py: represents the ¢** principal compo-
nent coefficient vector that is associated with &** phoneme.
Then, the Fuclidean distance between each phoneme pair
is calculated as:

Dik = ||m1—mk|| ’i=1...K, k=1...K. (2)

Finally, a similarity measure is derived from the distances
using:
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Su = i=1...K, k=1...K. (3)

This formulation assures that similarity values, S;z, will
range between 0 and 1. The constant v in the equation
can be adjusted to control the dynamic range of similarity
values appropriately. In the experiments reported in this
study we used a value of 10 for v. In general, it is ob-
served that the entries in the automatically derived matrix
agree with intuitive expectations. However, we have not
performed subjective tests to verify this statement yet.

Next, we formulated a procedure to pick visually most
similar context-phones to an unseen context-phone. It has
been shown that visual confusability depends highly on the
context of a phoneme [2]. Therefore, we have taken into ac-
count the context of a phoneme when selecting the appro-
priate context-phones in the codebook. We represent the
context-phone as ..1I3 s li _cri_ra_rs..., where “l,” repre-
sents n* phoneme to the left, “r,” represents n** phoneme
to the right, and ¢ represents the center phoneme. The sim-
ilarity of a test context-phone to each of the context-phones
in the codebook can be formulated as:
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where C' is the level of context information, L is the to-
tal number of context-phones in the codebook, S.; is the
similarity between the center phone of the unseen context-
phone and the j** context-phone in the codebook, Si,; is
the similarity between the it" left phoneme of the unseen
context-phone and the j** context-phone in the codebook,
and S,,; is the similarity between the it" right phoneme
of the unseen context-phone and the j** context-phone in
the codebook. Since similarity matrix values range between
zero and one, by selecting £ to be greater than 10 one can as-
sure that center phoneme match will always have the high-
est precedence in the decision procedure, and as we move
away from the center the influence of match will decrease.

The next section describes the face synthesis process us-
ing the visual phoneme similarity matrix and the audio-
visual codebook.



2.3. Face Synthesis

First, the context-phone which corresponds to the incoming
speech frame is compared to available context-phones in the
codebook in terms of their visual similarity. Using the sim-
ilarity metric discussed in the previous section, the top N
most similar context-phones are selected in the audio-visual
codebook. Next, the acoustic feature vector corresponding
to the incoming speech frame is compared to all the LSFs
that correspond to the top N context-phones. There will
be 5N such vectors, since each context-phone is represented
with 5 uniformly spaced audio-visual vectors. The incom-
ing LSF vector w is compared with each LSF vector, L;, in
the codebook and the distance, d;, corresponding to each
codeword is calculated. The distance calculation is based
on a perceptual criterion where closely spaced line spec-
tral frequencies which are likely to correspond to formant
locations are assigned higher weights.
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where 5N is the reduced codebook size based on context.
Based on the distances from each codebook entry, an ex-
pression for the normalized codebook weights can be ob-
tained as:

d;
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This set of weights v allows us to approximate the original

LSF vector w as a weighted combination of codebook LSF
vectors:

i=1,...,5N (6)
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The value of v in the previous equation is found by an
incremental search in the range of 0.2 to 2 with the criterion
of minimizing the perceptual weighted distance between the
approximated LSF vector W and original LSF vector w.
The set of weights v estimated based on acoustic similarity
are used to construct the PCs of face points corresponding
to the current speech frame:

5N
p(t) = viF: (®)

where F; represents the average principal component vec-
tor for it" codebook entry. Next, the time sequence of es-
timated principal component vectors, p(t) is smoothed to
provide more natural face point trajectories. We used two
different methods for smoothing: i) triangular windowing;
and ii) spline interpolation.

3. EVALUATIONS

We used ten minutes of audio-visual training data from
a single talker to generate our codebooks and the visual
phoneme similarity matrix. Five minutes of data was set
aside for testing. The visual data was recorded at a 60
Hz sampling rate. Using the proposed algorithm face point
trajectories were synthesized for the test data. In order to
test the upper limit on the performance of the algorithm,
we resynthesized the training utterances as well. Figure 2
shows an example face trajectory synthesized from one of
the test utterances. Here, the middle plot shows the cen-
ter upper lip point trajectories along y-axis across time
for original (dark dotted curve), synthesized with spline
smoothing (dark solid curve), and synthesized with trian-
gular smoothing (light curve). The bottom plot shows the
center lower lip point trajectories along y-axis across time
for original (dark dotted curve), synthesized with spline
smoothing (dark solid curve), and synthesized with triangu-
lar smoothing (light curve). As can be seen from the figure,
both synthesis algorithms are approximating the true face
point trajectories reasonably well. For example, for the /f/
phonemes in “often” (at time 0.8 sec) and “farm” (at time
2.0 sec) the synthesized lower lip moves upward following
the true trajectory. In fact, the highest error regions cor-
respond to non-speech sections. For speech sections, the
performance is significantly better. From the figure it can
also be observed that the spline method produces more nat-
ural and smooth trajectories when compared to triangular
smoothing method. However, it results in relatively larger
delays when compared to the triangular smoothing method.

For the evaluations, we used the correlation coefficient
between original and synthesized face point trajectories as
the performance criterion. In order to make a fair judg-
ment of the performance we used speech-only frames. The
silence frames were identified and disregarded in the evalu-
ations based on energy thresholding. In order not to disre-
gard stop consonants a median filtering over a sufficiently
long duration (112 ms) on the energy contour was applied
before the energy thresholding. The selected frames are
marked with dots in a straight line at the center of the lip
trajectory plots in Figure 2. No dots are printed for silence
frames. Since most of the points on the face do not move
significantly, we used upper and lower lip y-axis trajecto-
ries to obtain a reference of performance. The average cor-
relation coefficients between face point coordinates for the
original and synthesized data are shown in Table 1 both for
training and test data. From the table it can be seen that
despite the fact that the spline method produces more nat-
ural face point trajectories it performs slightly worse when
compared to the triangular smoothing method. This re-
sult can be explained by the fact that in general the spline
method produces relatively larger delays.

In order to determine the optimal number of similar
context-phones (N in Equation 5) used in the restricted
codebook search, we performed simulations. Figure 3 shows
the correlation between synthesized (triangular smoothing)
and true face point trajectories as a function of the num-



ber of similar context-phones used in the codebook. After 3
context-phones the curve levels off for held-out data. As can
be expected the performance on the training data degrades
as more context-phones are used.
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Figure 2: The comparison of original and synthesized
face point trajectories for held-out data. The sentence
was “Tornadoes often destroy acres of farm land”.

In order to determine the optimal number of similar
context-phones (N in Equation 5) used in the restricted
codebook search, we performed simulations. Figure 3 shows
the correlation between synthesized and true face point tra-
jectories as a function of the number of similar context-
phones used in the codebook. After 3 context-phones the
curve levels off for held-out data. As can be expected the
performance on the training data degrades as more context-
phones are used.

Our future plans include the development of a more ac-
curate global evaluation measure in terms of its correlation
with human judgment.

4. CONCLUSION

In this paper, a novel algorithm for face point trajectory
synthesis is described. For the modeling phase, an audio-
visual codebook is generated based on context-dependent
phonetic labels. In addition, the automatic generation of a
visual phoneme similarity matrix is described. The code-
book and the matrix are then used in the synthesis stage to
select the most likely codebook entries for a given speech
segment and phonetic label. The most significant contribu-
tion in this paper is the usage of acoustics in synthesizing
the fine detail face trajectories. The algorithm can be gener-
alized by not restricting the codebook search using phonetic
information. In that case, acoustic information alone can be
used to determine the codebook weights across the whole
audio-visual codebook. The performance may not be as
good when compared to algorithm performance using pho-
netic information, since acoustically confusable phonemes
{(e.g., /m/ versus /n/) may create problems in the synthe-

sized face in such a scheme. However, this capability may be
useful in practical applications such as video conferencing
or where language independence is a requirement.
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Figure 3: The influence of the number of similar context
phones N incorporated in the codebook on the perfor-
mance of the proposed algorithm.

Face Synthesis Algorithm Performance Evaluation
Test condition | Whole Face | Lower Lip | Upper Lip
Training Data 0.9239 0.9463 0.9287

Test Data 0.7338 0.8468 0.7230

Table 1: Average Correlation between original and syn-
thetic face point trajectories during speech-only sections
using top 3 visually most similar context-phones.
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