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ABSTRACT

In voice coding applications where there is no constraint
on the encoding delay, segment coding techniques can be
used to achieve a reduction in data rate. For iow data rate

linear predictive coding schemes, increasing the
enconding delay n.l]n.um ana tn avnlait any lanos term
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temporal stationarities on an interframe basis, thus

reducing the transmission bandwidth or storage needs of
the speech signal. Transform coding has previously been
applied in low data rate speech coding to exploit both the
interframe and the intraframe correlation [1][6]{8]. This
paper investigates the potential of an adaptive
transformation scheme for a d parametric
speech representation. The problem of transform
quantization is formulated and a solution methodology
was proposed. The potential benefit of the use of the
proposed adaptive transformation scheme is discussed in

the context of segmented LSPs.
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1. INTRODUCTION

Due to the non-stationary behaviour of speech, a linear
analysis/synthesis model can only be employed
accurately over a small time period, generally in the
range 10 - 35 msec. During certain sustained phoneme
elements however, the speech signal can exhibit a greater
degree of stationarity extending over a period of up to
§€Verdl nunurcus of mulliseconds. LUanqUCﬂllV uurmg
these periods, there is significant correlation between

ccessive frames of the model parameters and it is

p0531ble to exploit this correlation to reduce the overall
bit rate at the expense of added coding delay.

Segmentation techniques together with the Discrete
Cosine Transform (DCT) were employed to quantize the
MELP vocoder [5] parameters at 1530 bps, at the
expense of 450 msec coding delay, so that at a 95%
confidence limit, listeners could not differentiate the
quantized and unquanti7ed versions of the synthesized
speech output for 85% of the test phases. Further
improvement for this coding scheme was made by
Karhunen-Loeve Transform

the optimal
(KLT), in a fixed average sense in place of the DCT
[61(7]. This paper discusses the development of an
adaptive transformation scheme with locally optimal
transforms in place of the non-adaptive globally optimal

KLTs in [7].
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2. TRANSFORM CODED MELP

MODEL
The MELP model generates 6 parameter vectors per
frame (22.5 msec). Namely 10 LSPs, 5 voicing strengths,
2 energies, 10 Fourier coefficients, a pitch value and a
jittery voicing state. These parameters were buffered to a
depth of 20 frames.

The buffered frames of wvector parameters were
segmented into blocks by 1dentxfymg the boundaries of
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signal. The voiced-unvoiced decision was made similar
to LPC10e and silence classification was based on a
comparison of the current frame energy with an adaptive
threshold determined over the previous 500 frame
energies. The maximum block sizes were limited to 20
frames for silence and voiced and 8 frames for unvoiced
speecit. Segmentation was impiemented in a way to

ensure no fragmentation of the blocks occur due to the
limited buffer size
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the successive frames of a block whilst the second
dimension contains the elements of the parameter vector
within the frames. This allows exploitation of both inter
frame and intra frame correlation amongst the different
parameter elements to achieve a data compaction. The
binary jittery voicing state and the block type
information were not subjected to the transform
operation. 2D transformation was implemented by
applying two, one dimensional (1D) transforms row wise

and column wise for the 2D parameter blocks.

De-correlated transformed coefficients were norm
to zero mean and unit variance, and scaler quantized.
Mean and variance for each transformed coefficient for
different block sizes and types were predetermined by a
training process and available at the encoder and the
decoder. Lloyd-Max quantizers [3}{4] were designed
using the probability density functions (pdf) obtained

from the transform coefficients themseives.

For each transform coefficient within a parameter, bit
allocation was determined by it’s variance, according to
{2](6] and are optimal in a mean square sense amongst
all available block sizes, Cﬁauuug lower average bit rates
for larger block sizes due to the transform coding gain.

For the silence blocks, only the energy parameter was



needed to be quantized. For a target composite data rate
the proportioning of allocated bits to the various
parameters, was optimised for best subjective quality.

The synthesis process decodes the quantized transform
coefficients according to stored reconstruction values
and denormalises using stored mean and variance for
each possible transform coefficient.

3. ADAPTIVE TRANSFORMATION

For a first order Markov process, the DCT has been
reported to be asymptotically optimal as block size
extends to infinity or adjacent correlation coefficient
tends to unity [2}[9]. For the segmented MELP
parameters, however it was shown in (7] that the optimal
KLT determined in a tixed average sense (fixed KL.T)
can improve the coding gain significantly over DCT. A
fixed KLT scheme can be implemented by
predetermining the transform in a training session and
making it available at the encoder and decoder, thereby
avoiding the KLT calculations and the transform
encoding problems in the coding phase [7].

This fixed KLT diagonalizes the average covariance
matrix determined over all data and for any given group
of data blocks, however it does not diagonalise the local
covariance matrix of that group of data blocks. For each
group of data blocks, therefore a more optimal
transform than this fixed KLT, exists and this locally
optimal KLT can be determined via it’s local covariance
matrix.

One approach to avoid the expensive KLT calculations
during the coding phase and to retain some of the benefit
of locally optimal KLTs is to choose a transform from a
codebook of possible transforms for the particular type
of data blocks, wusing the vector quantization
methodology. The transforms defined in the codebook
would be chosen during a training session and referenced
by a simple codebook index. The use of locally optimal
KLTs however poses a new problem of quantizing the
current transform information in addition to the
transform output coefficients.

4. OPTIMIZATION CRITERION

To develop an optimization criterion for the transform
quantizer, consider the scalar quantization of 2D,
transform output coefficient block, 8un={ 6 ; k=1, 2...,
M, /=1, 2..., N}, The resultant quantizer error variance
for element &, can be expressed as,
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where sz(, is the variance of &, Ry is the number of bits
used to quantize 6, and c is a constant known as the
quantizer performance factor [2] and is same for all 6 if
they each have the same PDF shape. Rearranging (1),
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For the same quantizer error variance for all elements of
Owmn, (Quantizer error variance should be maintained the
same by a proper bit allocation so that for a given
average bit rate the average quantizer noise is a
minimum), the J value should be a constant. Therefore
the average bit rate (per coefficient) for Oyy can be
written as,
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Now consider the row wise (horizontal) 1D
transformation of the training data block of M by N, Xwun
={Xmn ; m=1, 2.., M, n=1, 2., N}. If K different
codebook transforms are used to map a total of L
training data blocks into K different partitions of
transform coefficient blocks, G; r=1, 2..., K; categarised
by the identity of the transform being taken, the total bit
requirement to quantize all the transform coefficients of
L training data blocks is,

K

RTotal = ZM‘N'Lr'(R)& ’ (4)

r=1
where L, is the number of data blocks coded by the ™
transform and (R), is the average bit rate, (3) for the .
partition of transform coefficient blocks, G'r.
K

Note that, L=YL,.

=1
Substituting (3) for (R), in (4), again assuming the same

B value across all partitions of transform coefficient
blocks, the total bit requirement can be written as,

K | MN L
[T 11
r=1 | k.=l ok, 5
Rrou =7 1082 | (5)
J

o . . . ~
where O';r is the variance of the k™ transform
ki

coefficient of the r™ partition of transform coefficient
blocks, G°.. For the row wise transformation of X,
assuming,
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Rowl, (3) 1S @ minimum when,



is a minimum.
From the optimal transform theory [2] it foilows that,
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where R’y is the average covariance matrix of the data
blocks corresponding to the r partition of transform
coefficient blocks G°. If these data blocks are
abbreviated by G*,, R', can also be written as,
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where R,, is the local covariance matrix of the "

!
training data block Xwmy;. These are Hermitian Positive
Definite real matrices of dimensions N by N.

The lower bound of the product of transform coefficient
variances can only be attained when the data blocks in
G*, were transformed to G°, by the KLT which was
determined via Ry,. This minimizes (7) for a given
partitioning {G", ; r=1, 2..., K} and can be written as,
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For a given K, ie. for the use of a fixed number of
transforms, the bit requirement for encoding the index of
the transform is fixed and hence the transform quantizer

optimization problem reduces to partitioning of data
blocks into G*;; r=1, 2..., K, to minimize (10).

5. SOLUTION METHODOLOGY

A direct analytical solution to optimize (10) is not
available and the solution space is also extremely large
to perform an exhaustive search. Therefore following an
analogous argument to the GL algorithm for VQ design,
the following solution methodology is proposed.

Stepl. Begin with an initial arbitrary representative
codebook of transforms.
Step2. Given a representative codebook of transforms

find the optimal partitioning, {G* ; r=I, 2...,
K}.

Step3. Find the optimal representative transform
codebook, for the partitioning just determined.

Step4. Evaluate  performance for the new

representative  codebook and check for

convergence to a final solution. if not, iterate
the process from step 2.

The initial transform codebook can be generated by
arbitrarily assigning the training data blocks to partitions
and calculating the average KLTs for each partition.

covariance matrix, R, determined by (9), and it
completely diagonalizes R,,;. When R,,; is completely

diagonalized the geometric mean of the transform
coefficient variances (GM), evaluated locally as,

is a minimum. Further more, for a sub-optimal transform,
the smaller the value of GM the more diagonalized will
be the R, The selection criterion for optimal
partitioning in step 2, can thus be chosen so as to achieve
the minimum GM; GM as given by (11).

Following the argument of the previous section, for a

arEitiae tha +1 1
given partitioning, the optimal representation for each

partition, for step 3, is the average KLT calculated via
the average covariance matrix, R', determined over the
data blocks in that partition via (9).

Sten 4 nrr\\nripc an exit condition for the iteration, when
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the algorithm has sufficiently converged to a solution.

6. EVALUATION

raliznta  tha metont
To evaluate the potent itial ben

adaptive transformation scheme, the transform coding
gain was calculated for the interframe and intraframe
adaptive transformations of 2D LSP blocks resulted by
the segmentation .algorithm of section 2. Complete
TIMIT training data base, lowpass filtered at 3.4 kHz
and decimated to 8 kHz, was utilised for training of two
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and intraframe transforms.

Transform coding gain is defined as,

[o L2;,PCM 1
G =10. logmt—;z———J (12)
q,TC
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where O pcyand O rcare the quantizer noise

» a c

variances for the PCM and transform codi
respectively.

Figures 1 and 2, show the transform coding gain in dB
for different transformation schemes against the block
size for the intraframe and interframe transformations
respectively. Coding gains for the fixed transforms, DCT
and fixed KLT are also plotted for the comparison.
These graphs show only a 0.5 to LdB improvement in
coding gain for the adaptive KL T scheme over the fixed
KLT scheme. This corresponds to a 1-2 bit savings per
LSP set for the adaptive KLT scheme over the fixed

KLT scheme for the same level of mean square error
distortion.
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Figure 1. Intraframe transform coding gain for voiced
LSP blocks.

7. SUMMARY

A criterion for the optimization of a transform quantizer
was developed considering the average bit rate
requirement for the transform coefficient quantization.
An iterative solution for the quantizer optimization was
proposed. Preliminary evaluation of the adaptive
transformation scheme in context of the coding scheme
described in section 2, however indicated only a
marginal improvement in the coding gain. The evaluation
does not either account for the overhead of codebook
index transmission.

The proposed adaptive transformation scheme can also
be utilised, however in other applications where a
dynamic transformation of data is beneficial.

Further research and testing is being presently carried out
to investigate the optimality of the iterative solution of
section 5 and for a complete evaluation of the proposed
adaptive transformation scheme, both objectively and
subjectively.
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Figure 2. Interframe transform coding gain for voiced
LSP blocks.
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