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ABSTRACT 
In voice coding applications where there is no constraint 
on the encoding delay, segment coding techniques can be 
used to achieve a reduction in data rate. For low data rate 
linear predictive coding schemes, increasing the 
encoding delay allows one to exploit any long term 
temporal stationarities on an interframe basis, thus 
reducing the transmission bandwidth or storage needs of 
the speech signal. Transform coding has previously been 
applied in low data rate speech coding to exploit both the 
interframe and the intraframe correlation [ 1][6][8]. This 
paper investigates the potential of an adaptive 
transformation scheme for a segmented parametric 
speech representation. The problem of transform 
quantization is formulated and a solution methodology 
was proposed. The potential benefit of the use of the 
proposed adaptive transformation scheme is discussed in 
the context of segmented LSPs. 

1. INTRODUCTION 

Due to the non-stationary behaviour of speech, a linear 
analysis/synthesis model can only be employed 
accurately over a small time period, generally in the 
range 10 - 35 msec. During certain sustained phoneme 
elements however, the speech signal can exhibit a greater 
degree of stationarity extending over a period of up to 
several hundreds of milliseconds. Consequently during 
these periods, there is significant correlation between 
successive frames of the model parameters and it is 
possible to exploit this correlation to reduce the overall 
bit rate at the expense of added coding delay. 

Segmentation techniques together with the Discrete 
Cosine Transform (DCT) were employed to quantize the 
MELP vocoder [5] parameters at 1530 bps, at the 
expense of 450 msec coding delay, so that at a 95% 
confidence limit, listeners could not differentiate the 
quantized and unquantized versions of the synthesized 
speech output for 85% of the test phases. Further 
improvement for this coding scheme was made by 
introducing the optimal Karhunen-Loeve Transform 
(KLT), in a fixed average sense in place of the DCT 
[6][7]. This paper discusses the development of an 
adaptive transformation scheme with locally optimal 
transforms in place of the non-adaptive globally optimal 
KLTs in [7]. 

2. TRANSFORM CODED MELP 
MODEL 

The MELP model generates 6 parameter vectors per 
frame (22.5 msec). Namely 10 LSPs, 5 voicing strengths, 
2 energies, 10 Fourier coefficients, a pitch value and a 
jittery voicing state. These parameters were buffered to a 
depth of 20 frames. 

The buffered frames of vector parameters were 
segmented into blocks by identifying the boundaries of 
voiced, unvoiced and silence regions of the speech 
signal. The voiced-unvoiced decision was made similar 
to LPClOe and silence classification was based on a 
comparison of the current frame energy with an adaptive 
threshold determined over the previous 500 frame 
energies. The maximum block sizes were limited to 20 
frames for silence and voiced and 8 frames for unvoiced 
speech. Segmentation was implemented in a way to 
ensure no fragmentation of the blocks occur due to the 
limited buffer size. 

For each parameter block a two dimensional (2D) 
transformation was applied. One dimension provides for 
the successive frames of a block whilst the second 
dimension contains the elements of the parameter vector 
within the frames. This allows exploitation of both inter 
frame and intra frame correlation amongst the different 
parameter elements to achieve a data compaction. The 
binary jittery voicing state and the block type 
information were not subjected to the transform 
operation. 2D transformation was implemented by 
applying two, one dimensional (1D) transforms row wise 
and column wise for the 2D parameter blocks. 

De-correlated transformed coefficients were normalised 
to zero mean and unit variance, and scaler quantized. 
Mean and variance for each transformed coefficient for 
different block sizes and types were predetermined by a 
training process and available at the encoder and the 
decoder. Lloyd-Max quantizers [3][4] were designed 
using the probability density functions (pdf-) obtained 
from the transform coefficients themselves. 

For each transform coefficient within a parameter, bit 
allocation was determined by it’s variance. according to 
[2][6] and are optimal in a mean square sense amongst 
all available block sizes, enabling lower average bit rates 
for larger block sizes due to the transform coding gain. 
For the silence blocks, only the energy parameter was 



needed to be quantized. For a target composite data rate 
the proportioning of allocated bits to the various 
parameters, was optimised for best subjective quality. 

The synthesis process decodes the quantized transform 
coefficients according to stored reconstruction values 
and denormalises using stored mean and variance for 
each possible transform coefficient. 

3. ADAPTIVE TRANSFORMATION 

For a first order Markov process, the DCT has been 
reported to be asymptotically optimal as block size 
extends to infinity or adjacent correlation coefficient 
tends to unity [2][9]. For the segmented MELP 
parameters, however it was shown in [7] that the optimal 
KLT determined in a tixed average sense (fixed KLT) 
can improve the coding gain significantly over DCT. A 
fixed KLT scheme can be implemented by 
predetermining the transform in a training session and 
making it available at the encoder and decoder, thereby 
avoiding the KLT calculations and the transform 
encoding problems in the coding phase [7]. 

This fixed KLT diagonalizes the average covariance 
matrix determined over all data and for any given group 
of data blocks, however it does not diagonalise the local 
covariance matrix of that group of data blocks. For each 

group of data blocks, therefore a more optimal 
transform than this fixed KLT, exists and this locally 
optimal KLT can be determined via it’s local covariance 
matrix. 

One approach to avoid the expensive KLT calculations 
during the coding phase and to retain some of the benefit 
of locally optimal KLTs is to choose a transform from a 
codebook of possible transforms for the particular type 
of data blocks, using the vector quantization 
methodology. The transforms defined in the codebook 
would be chosen during a training session and referenced 
by a simple codebook index. The use of locally optimal 
KLTs however poses a new problem of quantizing the 
current transform information in addition to the 
transform output coefficients. 

4. OPTIMIZATION CRITERION 

To develop an optimization criterion for the transform 
quantizer, consider the scalar quantization of 2D, 

transform output coefficient block, &J=( & ; k=l, 2..., 

M, i=l, 2..., N}, The resultant quantizer error variance 

for element & can be expressed as, 

2 
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where (J’~~ is the variance of &, Rkl is the number of bits 

used to quantize & and c is a constant known as the 

quantizer performance factor [2] and is same for all & if 

they each have the same PDF shape. Rearranging (l), 
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where p= -. 
C 
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For the same quantizer error variance for all elements of 

&, (Quantizer error variance should be maintained the 
same by a proper bit allocation so that for a given 
average bit rate the average quantizer noise is a 

minimum), the p value should be a constant. Therefore 

the average bit rate (per coefficient) for ~MN can be 
written as, I 

, where GM = (3) 

Now consider the row wise (horizontal) ID 
transformation of the training data block of M by N, XYIN 
=(xmn ; m=l, 2..., M, n=l , 2 . . . . N} . If K different 
codebook transforms are used to map a total of L 
training data blocks into K different partitions of 

transform coefficient blocks, Gor; r=l, 2..., K; categarised 

by the identity of the transform being taken, the total bit 
requirement to quantize all the transform coefficients of 
L training data blocks is, 

R TOtLdl = ~M.N.L,.(R), , (4) 
Fl 

where L, is the number of data blocks coded by the r* 

transform and (R),, is the average bit rate, (3) for the rth 

partition of transform coefficient blocks, G”,. 

Note that, L=iL,. 

r=l 

Substituting (3) for (R),, in (4), again assuming the same 

p value across all partitions of transform coefficient 

blocks, the total bit requirement can be written as, 

where U’ 
61 

is the variance of the kth transform 

coefficient of the r* partition of transform coefficient 

blocks, GO,. For the row wise transformation of XMN, 

assuming, 

2 cr 
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RTocal, (5) is a minimum when, 



is a minimum. 

From the optimal transform theory [2] it follows that, 

where R’,, is the average covariance matrix of the data 
blocks corresponding to the rth partition of transform 

coefficient blocks GO,. If these data blocks are 

abbreviated by G”,, R’,, can also be written as, 

X,EG; 

R&x =$ CRxxi ; R,,i = 
XLNi’XMNi 

M ’ 
(9) 
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where R,,i is the local covariance matrix of the i* 
training data block XMNi. These are Hermitian Positive 
Definite real matrices of dimensions N by N. 

The lower bound of the product of transform coefficient 
variances can only be attained when the data blocks in 

G”, were transformed to GO, by the KLT which was 

determined via R’,,. This minimizes (7) for a given 
partitioning (G”, ; r=l, 2..., K) and can be written as, 

z =IR:,/LI.l~~~/L2...IR%(LK (10) 

For a given K, ie. for the use of a fixed number of 
transforms, the bit requirement for encoding the index of 
the transform is fixed and hence the transform quantizer 
optimization problem reduces to partitioning of data 
blocks into G”, ; I= 1, 2 . . . . K, to minimize (10). 

5. SOLUTION METHODOLOGY 

A direct analytical solution to optimize (10) is not 
available and the solution space is also extremely large 
to perform an exhaustive search. Therefore following an 
analogous argument to the CL algorithm for VQ design, 
the following solution methodology is proposed. 

Stepl. 

Step2. 

Step3. 

Step4. 

Begin with an initial arbitrary representative 
codebook of transforms. 

Given a representative codebook of transforms 
find the optimal partitioning, (G”, ; r=l, 2.... 

Kl. 

Find the optimal representative transform 
codebook, for the partitioning just determined. 

Evaluate performance for the new 
representative codebook and check for 
convergence to a final solution. if not, iterate 
the process from step 2. 

The initial transform codebook can be generated by 
arbitrarily assigning the training data blocks to partitions 
and calculating the average KLTs for each partition. 

The optimal 1D transform (row wise) for a single 2D 
data block of M by N is the KLT evaluated via it’s local 

covariance matrix, Rxxi determined by (9). and it 
completely diagonalizes R,,i. When R,,i is completely 
diagonalized the geometric mean of the transform 
coefficient variances (GM), evaluated locally as, 

is a minimum. Further more, for a sub-optimal transform, 
the smaller the value of GM the more diagonalized will 
be the R,,i. The selection criterion for optimal 
partitioning in step 2, can thus be chosen so as to achieve 
the minimum GM; GM as given by (1 I). 

Following the argument of the previous section, for a 
given partitioning, the optimal representation for each 
partition, for step 3, is the average KLT calculated via 
the average covariance matrix, R’,, determined over the 
data blocks in that partition via (9). 

Step 4 provides an exit condition for the iteration, when 
the algorithm has sufficiently converged to a solution. 

6. EVALUATION 

To evaluate the potential benefit of the proposed 
adaptive transformation scheme, the transform coding 
gain was calculated for the interframe and intraframe 
adaptive transformations of 2D LSP blocks resulted by 
the segmentation algorithm of section 2. Complete 
TIMIT training data base, lowpass filtered at 3.4 kHz 
and decimated to 8 kHz, was utilised for training of two 
transform codebooks each of size 8, for the interframe 
and intraframe transforms. 

Transform coding gain is defined as, 

G (12) 

where ~:,PcM and c&-o are the quantizer noise 

variances for the PCM and transform coding schems 
respectively. 

Figures 1 and 2, show the transform coding gain in dB 
for different transformation schemes against the block 
size for the intraframe and interframe transformations 
respectively. Coding gains for the fixed transforms, DCT 
and fixed KLT are also plotted for the comparison. 
These graphs show only a 0.5 to 1dB improvement in 
coding gain for the adaptive KLT scheme over the fixed 
KLT scheme. This corresponds to a l-2 bit savings per 
LSP set for the adaptive KLT scheme over the fixed 
KLT scheme for the same level of mean square error 
distortion. 
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Figure 1. Intraframe transform coding gain for voiced 
LSP blocks. 

7. SUMMARY 

A criterion for the optimization of a transform quantizer 
was developed considering the average bit rate 
requirement for the transform coefficient quantization. 
An iterative solution for the quantizer optimization was 
proposed. Preliminary evaluation of the adaptive 
transformation scheme in context of the coding scheme 
described in section 2, however indicated only a 
marginal improvement in the coding gain. The evaluation 
does not either account for the overhead of codebook 
index transmission. 

The proposed adaptive transformation scheme can also 
be utilised, however in other applications where a 
dynamic transformation of data is beneficial. 

Further research and testing is being presently carried out 
to investigate the optimality of the iterative solution of 
section 5 and for a complete evaluation of the proposed 
adaptive transformation scheme, both objectively and 
subjectively. 
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Figure 2. Interframe transform coding gain for voiced 
LSP blocks. 
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