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ABSTRACT

This paper presents a novel framework of on-line hierarchical
transformation of hidden Markov models (HMM’s) for
speaker adaptation. Our aim is to incrementally transform (or
adapt) all the HMM parameters to a new speaker even though
part of HMM units are unseen in adaptation data. The
transformation paradigm is formulated according to the
approximate Bayesian estimate, which the prior statistics and
the transformation parameters are incrementally updated for
each consecutive adaptation data. Using this formulation, the
updated prior statistics and the current block of data are
sufficient for on-line transformation. Further, we establish a
hierarchical tree of HMM’s and use it to dynamically control
the transformation sharing for each HMM unit. In the speaker
adaptation experiments, we demonstrate the superiority of
proposed on-line transformation to other method.

1. INTRODUCTION

It is no doubt that speaker adaptation technique is a practical
approach to improve the speaker-independent (SI) speech
recognition system for an enrolled speaker by using some
adaptation data. Generally, the adaptation techniques can be
employed in three strategies; (1) batch adaptation, (2) self
adaptation, and (3) on-line adaptation. Batch adaptation is an
off-line adaptation where the models are adapted by using
batch data. Self adaptation executes the adaptation on testing
data itself at runtime and in an unsupervised manner. It is able
to trace the changing variabilities during recognition. However,
owing to the insufficient observations and unreliable
transcription, the resulting performance is constrained.
Besides, on-line adaptation is a tradeoff strategy between
batch adaptation and self adaptation. It is aiming at performing
adaptation incrementally only when a block of data is
observed. This block of data is then thrown away after
completing the adaptation. Consequently, the merit of on-line
adaptation is to continuously update the speech models
without waiting long history of batch data. Its flexible
characteristics have been attracted many studies focusing on
this issue [3][5-6].

In the literature, there are two categories of adaptation
algorithms. One is the transformation-based adaptation, where
clusters of HMM’s are individually transformed by using
some ftransformation parameters [7]. The other is the
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maximum a posteriori (MAP) adaptation of HMM parameters.
By serving the SI HMM’s as prior statistics, the HMM
parameters are adapted accordingly based on the MAP
estimate [4]. In case of limited adaptation data, the
transformation-based adaptation can efficiently transform all
the HMM parameters by wusing cluster-dependent
transformation functions. Conversely, in case of sufficient
adaptation data, the MAP adaptation can effectively merge the
adaptation tokens into the SI HMM parameters. By jointly
performing MAP transformation and adaptation, we can
obtain better performance than separate methods for a wide
range of adaptation data [1]. On the other hand, the
construction of tree structure of HMM’s in transformation-
based adaptation can dynamically capture the goodness of
transformation parameters and also benefit the adaptation
performance for various amounts of adaptation data [8-9].

As explained above, we are motivated to propose the on-line
hierarchical transformation of HMM parameters for speaker
adaptation. The proposed method is based on the approximate
Bayesian (or quasi-Bayes, QB) estimate described by Huo and
Lee [6]. Using QB, the unknown parameters are estimated by
maximizing the approximate posterior pdf, which is a product
of likelihood function of current block data and a prior density
given the updated parameter statistics (or hyperparameters).
The hyperparameters are obtained from previous observed
data. By specifying the prior density as conjugate prior family,
we may generate a reproducible prior/posterior pair and then
formulate a recursive MAP estimate for on-line adaptation. In
[6], the QB learning of continuous-density HMM (CDHMM)
parameters was derived for on-line speaker adaptation. Their
algorithm relied on the speaker providing at least one example
of each vocabulary in adaptation data. Such method may not
be feasible to the adaptation with increasing vocabulary size
and limited adaptation data. In this paper, we present a
transformation-based on-line adaptation approach, where the
overall HMM parameters are incrementally transformed. We
build a hierarchical tree of HMM parameters such that each
HMM unit can search its most likely transformation
parameters from leaf node to root node. For each HMM unit,
we extract the node containing adaptation tokens and use its
parameters for on-line transformation.  Experiments
demonstrate that proposed method performs well for various
numbers of adaptation data and lengths of adaptation interval.

2. ON-LINE TRANSFORMATION

In the continuous-density HMM framework, we are given a set
of parameters A = {cy, liy, 5y}, where @, , f; and r, are



the mixture gain, mean vector, and precision (or inverse
covariance) matrix, ie. 1, =X, , of the kth mixture
component from the ith state. Let the HMM parameters A be
grouped into C clusters. Our goal is to transform the clusters
of HMM parameters to a new environment through some
transformation functions G, (), n={n}, ¢=1L--,C. Let
x" =1{X,,X,,--,X,} be n ii.d. and successively observed

adaptation samples/blocks, which are used to estimate the
transformation parameters 77 . The a posteriori density of 7

satisfies the following recursive relation [10]
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To overcome the computational difficulties in (1), an QB
estimate of 7' after observing the current sample X, is

approximated by [6]
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where g(171@"™ ™) is the closest tractable prior density for
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posterior density p(n7! )(H) and ¢ is the updated

hyperparameters after observing previous blocks x" . Using
QB estimate with an initial hyperparameters 0, we can
estimate the transformation parameters 77" by applying X,
in (2). Then, the hyperparameters ¢ are updated and stored

for the estimation of next parameters 7' . Accordingly, a
recursive formulation for parameter sequence 1,,1,,---,7], is
established. Because QB estimate in (2) is an incomplete data
problem, we use the EM algorithm to iteratively improve the

(n)

approximate posterior likelihood of current estimate 77** and

A(m)

derive the new estimate 17} in an optimal manner [2].

Applying the EM algorithm, we perform the following two
steps.

E-step: Calculate the auxiliary function
R@™ 1n™) = Eflog p(X,.s,.1, 1§+
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where s, ={s"} is the state sequence, 1,={/"} is the

mixture component sequence, and (X,,s ) is our choice
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of complete data.

M-step: Find the new estimate

A" = argmax R 1n). @)
7

The iterative EM steps guarantee that the approximate
posterior density never decreases.

3. TRANSFORMATION FORMULATION

Before the derivation of on-line transformation (also referred
as OLT), the definitions of transformation function and prior
density should be addressed. In this study, the HMM
parameters are transformed by
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Herein, the HMM unit with indices i and £ is attributed to the
cth cluster membership €, . On the other hand, we constraint

where . is a bias vector and 96(”) is a scaling matrix.

the prior density in conjugate family due to mathematical
attractiveness. The joint prior density of transformation

parameters 1 = (u{,0¢") of membership €, is defined
as a normal-Wishart density of the form [4]
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where G — (gD gD gD are  the

hyperparameters of prior density determined from previous
successive data. Under this definition, the posterior density of

complete data (ie. K-exp{R(A™ In)}), can be also
expressed in a form of normal-Wishart density g(#™ 1¢,)

with the new hyperparameters ¢, = (7,.,m,,&,,i,) given as

follows:
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probability of being in state i and mixture component £ given

that the current parameters ¢ generate X, ={x'”} and
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The E-step of EM algorithm is therefore completed. In the M-

A(m)

step, we maximize g(f 14,) with respect to A and

derive the new estimate of transformation parameters



A9 = (1,6 shown below
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By iteratively performing E-step and M-step for several times,

we finally obtain the transformation parameters ﬁi”). Using

A7 =A™y ={a",6), the HMM parameters are

transformed according to (5). After the transformation, the
hyperparameters are refreshed by

o™ =z w0 Uy = (T, W, 4,0, . (16)

These hyperparameters (p(”) are then kept in memory and

served as the new hyperparameters for on-line estimation of

(n+l)

next transformation parameters 1} when consecutive data

X, are collected. As shown in above derivation, the merit of

proposed method is focused on the generation of reproducible
prior/posterior pair in EM algorithm so that the transformation
parameters and the associated hyperparameters can be
efficiently and recursively computed for OLT. Generally, this
set of formulas can be easily extended in terms of the
segmental QB estimate which the state sequence s, and

transformation parameters 7] are alternately maximized [6].

4. HIERARCHICAL TRANSFORMATION

In OLT, it is crucial to dynamically control the number of
transformation parameters such that the recognition accuracy
can be improved for limited adaptation data as well as
abundant adaptation data. To achieve this goal, a hierarchical
tree of HMM parameters should be established prior to the
adaptation [8-9]. In this study, we built the tree by clustering
HMM parameters (or pdfs) using the K-means algorithm [11].
During clustering process, the divergence measure [11] was
served as the distance measure. After building the tree, the
node labels of HMM units in each layer are determined.
Theoretically, the HMM units connected to the same node
possess similar acoustical behaviors and can be suitably
transformed via the shared transformation parameters. In case
of missing adaptation data, part of nodes in lower layer may
miss adaptation tokens. As a result, we usually obtain the
transformation parameters for most nodes in higher layer and
few nodes in lower layer. To reinforce the OLT precision, the
HMM parameters should be transformed using the parameters
nearest to leave layer. Thus, our aim is to automatically extract
the transformation parameters for each HMM unit based on a
bottom-up search strategy. This strategy captures the
transformation  factors along the hierarchical path
corresponding to each HMM unit. The algorithm of bottom-up
search strategy is described and shown below.

For each HMM unit A,, we search the transformation

parameters from leaf layer to root layer and perform the
following steps. First, the cluster label of 4, in a layer is
extracted. Then, we check if there exist the transformation
parameters for this label. If exist, we use the associated

parameters 1" for OLT, ie. Gn‘“) (A;) . Otherwise, we

c

further check if the hyperparameters of this label
(n1) _ (D) (rl) (rD) | (n-D) : :
S =@ m e o uY)  exist. If exist, we

(n—1)

transform the mean vector f;, by adding the bias term m,

and the covariance matrix X, by multiplying the scalar term
(@ — )™ u!"™Y as indicated in (14-15). Once the HMM
unit A, is transformed, we skip to process the next HMM

unit. Finally, this algorithm is ended until all the HMM units
are transformed.

Bottom-up search algorithm for OLT
1. for each HMM unit A,

2 for tree depth from leaf layer to root layer
3 Extract cluster label of A, in that depth
4 if its transformation parameters 1" exist
5. Perform on-line transformation G e X))
6 go to step 1
7 else if hyperparameters of that label (pi'“l) exist
8 Perform on-line transformation G(p(n,l) X))
9. gotostep 1
10. end
11. end
12.end
5. EXPERIMENTS

The experiments conducted in this paper are aimed at the
recognition of Mandarin speech. Mandarin is a syllabic and
tonal language. Without considering the tonal information, the
overall number of Mandarin syllable is 408. Generally, each
Mandarin syllable can be divided into an initial (consonant)
part and a final (vowel) part. When the syllable only has final
part, a null initial exists practically. In this study, we employed
the context-dependent subsyllable modeling for constructing
the HMM units of Mandarin speech. Cumulatively, there were
93 context-dependent (CD) initials, 38 context-independent
(CD) finals and 33 null initials included in the experiments. We
arranged the CD initials, CI finals and null initials by three,
four and two HMM states, respectively. Hence, 498 HMM
states (279 for CD initials, 152 for CI finals, 66 for null
initials and 1 for background silence) were setup for covering
all phonetic units of 408 Mandarin syllables. Herein, two
speech corpora were collected and provided by
Telecommunication Laboratories, Chunghwa Telecom,
Taiwan. The first one consisted of 5045 phonetically-balanced
Mandarin words uttered by 51 males and 50 females. It was
recorded in an office room. We applied this database to
generate the SI HMM parameters and estimate the initial
hyperparameters for OLT. The speech frame was characterized
by a feature vector comprised of 12-order LPC-derived
cepstral coefficients, 12-order delta cepstral coefficients, 1
delta log energy and 1 delta delta log energy. Besides, the
second database consisted of four repetitions of 408 isolated
Mandarin syllables spoken by a single female speaker. This
database was collected in a soundproof room. We used three
repetitions for testing and the remaining one for adaptation.
Only supervised adaptation was investigated. Our recognition
task is to recognize 408 Mandarin syllables, which is known



to be a highly confusable vocabulary. Without adaptation, the
baseline result using SI speech models had a top five
recognition rates 73.8%. In the following, we examine
proposed OLT through two sets of experiments.

First, we compare the recognition results of OLT with various
update intervals in Fig. 1. In this case, the total number of
adaptation data is fixed at N=150. The update intervals of I=5,
10, 15, 30, 50, 75 and 150 are considered in the comparison.
Notably, the case of I=150 corresponds to perform the batch
adaptation. We can see that the top five recognition rates are
increased from 85.7% of I=5 to 89.7% of 1=100. This is
because that longer interval of speech data contains larger
knowledge of training tokens and phonetic units. The
goodness of estimated transformation parameters could be
guaranteed. However, long interval of data collection is less
practical due to higher costs of computation and memory.
Therefore, it is a tradeoff between update interval and
recognition result in OLT. On the other hand, we demonstrate
the superiority of proposed OLT over Huo’s on-line
adaptation (also referred as OLA) [6] which QB estimate was
applied for estimating CDHMM parameters. Herein, the
update interval are set to be I=15. As shown in Fig.2, the
recognition performance of OLT is significantly better than
that of OLA. The improvement is especially obvious for small
N. For examples, the top five recognition rate of OLT at N=30
is 83.2%, which is excellent compared with 75.5% of OLA.
The main reason is that the proposed OLT is capable of
hierarchically transforming overall HMM units even though
most of sounds are unheard in adaptation data. Conversely, the
OLA only adjusts the HMM units appearing in adaptation data.
From these prompting results, we conclude that the proposed
on-line hierarchical transformation is an effective approach to
incremental adaptation in large scale’s HMM-based speech
recognition.
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top 5 recognition rate (%)

update interval in OLT
Fig. 1. Recognition result versus update interval in OLT.
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Fig. 2. Recognition comparison of OLT and OLA.

6. CONCLUSION

We have extended the framework of QB estimate to
recursively learn the parameters for OLT. Our purpose is to
incrementally adapt the model parameters to fit the newest
variabilities without the need of storing previous adaptation
data. In this study, we emphasized our contribution on the
development of on-line transformation of overall HMM
parameters in large-vocabulary speech recognition system
even though only limited adaptation data are available. We
constructed a tree structure of HMM parameters as the prior
knowledge to dynamically control the transformation tying in
OLT. This method is really adaptive in nature for speech
recognition. In the speaker adaptation evaluation, the
proposed OLT was improved asymptotically for increasing
number of adaptation data. Besides, due to the capability of
transforming all HMM units by using insufficient adaptation
data, our OLT was significantly superior to other on-line
adaptation method for various update intervals and adaptation
data amounts.
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