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ABSTRACT

Speech recognition systems based on hidden Markov models
(HMM) favourably apply a linear discriminant analysis trans-
form (LDA) in order to get low-dimensional and uncorrelated
feature components. However, since the distributions in the
HMM states usually are modeled by mixture gaussian
densities, the description by second-order moments (scatter
matrices) no longer is correct. For this purpose we introduced a
new ,extended linear discriminant analysis™ transform (ELDA)
which starts from conventional LDA. The ELDA transform is
derived by use of a gradient descent optimization procedure
based on a ,minimum classification error (MCE) principle,
which is applied to the original high-dimensional pattern
space. The transform matrix, the best fitting prototype of the
correct class (i.e. HMM state) and the nearest rival are
adapted. We developed a method which additionally updates
all prototypes by a separate maximum likelihood (ML)
estimation step. This avoids that such means and covariances,
which mostly remain unaffected by the MCE procedure, may
diverge step by step.

1. INTRODUCTION

Automatic speech recognition systems commonly are
separating this task into several subtasks, which perform the
preprocessing of the speech signal, extract suitable features
and finally carry out classification by means of stochastic
models, such as hidden Markov models (HMM). It is obvious,
that an optimal classification scheme needs all these three
stages to be performed as good as possible with respect to the
overall error rate. For preprocessing usually smoothed
frequency spectra or cepstral coefficients along a mel scale are
used with good success. In our system, we apply a functional
model of human loudness sensation which yields so-called
loudness spectra arranged on a Bark scale [1]. These loudness
spectra have also proven to be well suited as a basis for speech
recognition.

The remaining critical stage is the feature extraction, which

should deliver components having special properties:

o the components should be uncorrelated since usually the
HMM classifier only applies diagonal covariance matrices,

o the resulting number of components (dimensionality)
should be as small as possible in order to reduce the
number of parameters to be estimated during training,

e and last not least the low-dimensional feature represen-
tation should guarantee minimal classification error.

The well-known linear discriminant analysis (LDA) has proven
to be a good starting point for feature extraction. In [2] this

transform is further adapted with respect to minimizing the
classification error using the steepest descent method.
However, this additional ,.step transform™ was applied to the
low-dimensional feature space. Several methods have been
proposed to go further and to combine optimization of feature
extraction with optimization of the classifier parameters, e.g.
for hidden Markov models [3,4,5.6] or for simple nearest
neighbor classifiers [7]. The transforms also were represented
by neural nets which are discriminatively trained [8]. In
contrast to most of these approaches, in our system we
consequently utilize the important potential of the feature
extraction stage, that 1is the possible reduction of
dimensionality. A comparable solution already was reported in
[3] for spoken letters. In our approach we are able to derive
from a high-dimensional raw pattern vector or even from a
series of consecutive pattern vectors (so-called super vectors)
the desired low-dimensional feature vectors, which facilitate
the estimation of the remaining classifier parameters
considerably.

For this purpose we introduced a discriminant transform which
also is derived from a linear discriminant analysis. We call this
procedure extended linear discriminant analysis™ (ELDA).
The basic idea for ELDA is to start from a conventional LDA
including dimensionality reduction, but to optimize this
rectangular transform matrix further with respect to
minimizing the overall error rate. This is necessary, since the
LDA only utilizes the between-class scatter matrix and the
within-class scatter matrix. Therefore, optimality is only
guaranteed for the case that each class is represented by a
single gaussian distribution. But this assumption is extremely
violated in case of continuous density HMMSs, which
incorporate mixture densities consisting of several gaussian
densities in each state. When the states are assumed to be
discriminated by the feature extraction step, the necessary
assumptions are in no way fulfilled.

In order to reach this goal, the LDA matrix is further processed
in our new approach by using a gradient descent optimization
procedure on the basis of a minimum classification error
(MCE) principle [3], which is applied now to the original high-
dimensional pattern space. The optimal solution is found by
simultaneously changing both, the transform matrix and the
main classifier (HMM) parameters. We start from labeled
speech training material, where the alignment to the states of
phoneme HMMs is known. The states of all HMMs are the
classes to be discriminated by the LDA or ELDA. The error
function takes into account for each input vector the correct
state (correct class) as well as that state from all remaining
states, which fits best (this is a ,.rival” state which is assumed



to contain most danger of possible misclassification). Thus,
only the parameters (gaussian distributions) of the best modes
in these two selected states are changed. The correct state is
always positively adapted to the input vector and the rival state
is adapted away from the input vector. In this way the
discriminative power of the HMM s is increased. Additionally -
as the main scope of this paper - the parameters of the
transform matrix are adjusted accordingly, thus increasing the
discriminative power of the transform.

The main problem is based on the fact that on the one hand the
total transform matrix always is adapted, but on the other hand
only the selected means and covariances are touched. Therefore
the remaining unaffected means and covariances will diverge
step by step, until they are likewise selected as nearest
prototypes. If this does not happen often enough, most of the
prototypes will no longer be representative in this new feature
space and the complete procedure is predicted to diverge and to
produce bad overall results.

We propose two solutions to overcome this problem:

1) all prototypes (means and covariance matrices) are
subjected to the transform, or

2) all prototypes are updated by a separate maximum
likelihood (ML) estimation step.

The first solution is difficult to realize in practice, since the
original vectors of the means (in the original NxN space) do
not exist. In this paper we therefore favor the second solution.
That means that an additional ML estimation step will adjust
all prototypes, regardless if they are selected by the gradient
adjustments or not. Of course the means will loose their special
power now for discriminating the classes. But since the
primary goal is to establish the ELDA transform, this goal will
be reached nevertheless. The means are only to be seen here as
intermediate auxiliary prototypes, which are utilized as
substitutes for the subsequent HMM models which are built up
in the training phase.

The methods for establishing the conventional LDA are
assumed to be well-known. In the following we present the
complete algorithm for ELDA: i.e. we define the error measure
for discriminating HMM states and give the formulae for
calculating the gradients with respect to all parameters.

2. EXTENDED LINEAR DISCRIMINANT
ANALYSIS (ELDA)

We start from the average intra-class scatter matrix Sy, (,,within
classes) and the average inter-class scatter matrix Sy
(,,between classes™), where the classes are chosen to be the
HMM states. The matrix Sy is calculated from all input vectors
X . A 2-step procedure creates the LDA matrix W, as usual [9].

The transform matrix W is now adapted further with respect to
the minimum classification error. The classifier for ELDA
optimization is a simplified version of the phoneme HMMs. It
consists of the states alone, whereby only the best fitting mode
in a state is taken into account. Therefore, the emission

probability of a pattern vector y in state 1 with 1 = 1...L. modes
is approximated by:
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where mix;y 1s the mixture coefficient for mode 1 in state 1, and
R is the reduced dimensionality. If the neg-log probabilities are
used, we get a measure for the distance to the class means:
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A discriminant measure is defined as the difference d(y)
between the distance of y to the correct state s = s, and the
nearest rival state s = s

d(y) = D.(y) - Dy(y)

. C
= 21n—ml_Xkl +In =4

+@y-m)yYCl(y-m)—-(y-m,)Co(y—m,
i ¥ -my) Cy (y-my) -y -m) Cp (¥ — myy)

ol =kl

where the letter 1 denotes the index for the best fitting gaussian
distribution in the correct state c, and 1" denotes the best fitting
distribution in the rival state k. We decided to search for the
rival only in the non-correct states, i.e. k # ¢ . Here we have
some similarity to the solution reported in [7], where the mean
vectors constitute a simple nearest neighbor classifier and the
variances are not taken into account.

Since the LDA transform is used for dimensionality reduction,
too, only R components are calculated from the original N
components. That means, only a rectangular part N x R of the
original N x N matrix is used. If we denote - for sake of
simplicity - the pattern vector after mean-subtraction again as
X, we get:

y = W x with LDA matrix W. and R<N, E{x}=0

N xR

In the following, the covariance matrices are always assumed
to be diagonal, so that matrix inversion gets trivial and only the
variances Cj are taken into account. Applying the transform to
the actual mean-subtracted input vector X and performing some
basic calculations, the distance d(y) is expressed on the basis
of the single components as:
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If the distance measure is less than zero, we have a correct
classification, because the rival state k is farther away than the



correct state ¢. On the contrary, a d(y) value greater than zero
denotes a wrong classification.

Using the sigmoid function, a loss function is defined as:
L(y) = £(d(y)) =

with the derivative
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The total loss L for all vectors ym, m = 1..M is calculated as

the sum
M
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The loss function gets a small value, if the distances d(ym)
become as negative as possible, and that means that we have
correct classifications. A (local) minimum for L is obtained by
using a gradient descent method. The parameters of an
arbitrary function @ have to be adjusted in an iterative manner
from step n to step nt+1 with the adaptation constant :
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In this way the LDA matrix W, the two selected mean vectors
m® and m® , and the corresponding diagonal covariance
matrices can be recalculated for each component:
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Using the chain rule we get the desired gradients for one input
vector X (see the box of equations below).

These gradients have to be summed up for all input vectors, in
order to get an adaptation all at a time“. For instance, the
gradients for the total loss with respect to the W matrix
component Wj; are obtained by
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The adaptation constants €; s have to be well adjusted in order
to avoid corrupted results. For instance, the variances should
be updated with a small value, since they could get too narrow
or even get negative.

It has to be noticed, that the gradients of the means and
covariance matrices are present only for those instances, which
are selected as ,,correct™ or ,rival” at the moment. That means,
many of the prototypes mostly remain untouched. For this
reason the number uf update contributions may be rather
different for the single items. This has to be taken into account
when setting the adaptation constants.

Wi(n + 1) = Wy(n) — &, oL The big computational load appears only in the training phase.
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by the additional gradient adaptation will decrease the error
rate further.

3. EXPERIMENTAL RESULTS

The methods have been tested with speech material from the
German Verbmobil project. The training set consisted of 1186
sentences from 53 different speakers, spoken in a spontaneous
manner. The independent test consisted of 286 sentences from
12 new speakers. The system used 52 context-independent
phoneme models (HMMs) with 3...4 states. Altogether there
were 169 states giving 169 classes for the LDA. The lexicon
contained 3312 German words.

The preprocessing step yields loudness spectra with 20
components, delta spectra and delta-delta spectra with 20
components each. Together with the loudness values, a
modified loudness component and the zero crossing rate, we
get 66 components. Three consecutive vectors are collected to
represent a super vector, denoted as x with 198 dimensions.
This input vector is reduced by the LDA or ELDA to a 66-
dimensional vector y which is the input to the HMM classifier.
The sigmoid parameter y was set to 0.5 .

The following table shows the word error rate after the
individual iterations (the complete training material applied
all at a time*). The recognition test has been carried out with
the independent test set.

orig. LDA
41.5%

ELDA (iteration # 1)
40.9%

ELDA (iteration # 2)
43.0%

Table 1. Total word error rate, ELDA adaptation alone.

The results in Table 1 show that the error rate slightly goes
down after 1 full iteration, and then distinctly increases. This
effect was expected, since the ELDA transformed feature space
no longer fits to all prototypes.

In order to overcome this problem, we applied a maximum
likelihood estimation step after the ELDA iteration, reducing
the error rate considerably, see Table 2. A further ELDA
iteration (# 4, not contained in the table) strongly rised the
error rate again, since in this case we obviously already got
some kind of overadaptation. Applying two ML steps gave
good and robust HMM models, but the word error rate
increased again. Best results were obtained by using one ELDA
iteration followed by one ML step.

Orig. LDA | ELDA (iter. # 1) [ ML (iter. # 2) [ ML (iter. # 3)

41,5% 40,9% 40,1% 40,9%

Table 2. Total word error rate after additional ML estimation.

Altogether, with application of ELDA an error rate reduction of
1.4 % (or relatively 3.4 %) as compared to the original LDA
transform could be obtained in these first experiments.

4. DISCUSSION

The variances are very sensitive to the gradient adaptation
method. For this reason, in an additional experiment we
disclaimed their adaptation. The results obtained were very
similar to those displayed above in Table 2. That means that
the main effects are caused by the ELDA transform and by
adaptation of the mean vectors, and adaptation of the variances
could be neglected.

Some re-classification tests with the training material itself
showed, that the error rate could be reduced considerably
further, down to 23 %. But in this case we already got a clear
overadaptation effect. That means that the training set has to be
enlarged, in order to get better results for independent test sets.
It will be especially interesting to test the second method, that
is to apply during the iteration steps the newly calculated
ELDA transform to all means immediately, thus avoiding the
mismatch of the unaffected mean vectors. These experiments
are in progress. In any case, the presented methods for
calculating the ELDA transform have proven to yield a
suitable, improved feature extraction stage for speech
recognition.
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