EFFICIENT LEXICAL RETRIEVAL FOR ENGLISH TEXT-TO-SPEECH
SYNTHESIS

Daniel Faulkner & Charles Bryant

Aculab PLC, Lakeside, Bramley Road, Mount Farm, Milton Keynes, MK1 1PT, UK

ABSTRACT

We present a first version of a filter dictionary for use in a
computer-telephony text-to-speech synthesis system. The aim of
the filter dictionary was to provide a lexicon that was compact,
fast and had broader coverage than the standard dictionary used
to create it. Correct phonemic transcriptions and lexical stress
assignment were both required for a transcription to be deemed
accurate. The approach taken here guarantees 100% accurate
coverage of the original dictionary, but also gives 93% accurate
transcription of the expected coverage of novel words. Lexical
stress and the phonemic transcription were retrieved in one pass,
resulting in an extremely fast system. We also allowed user-
definition to retain accuracy for non-standard transcriptions.
This algorithm was developed for British English, but could be
applied to other languages.

1. INTRODUCTION

One of the primary issues of text-to-speech synthesis is accurate
grapheme-to-phoneme conversion for English. English does not
have a very consistent mapping from spelling to phonology, so
the task is more challenging than for a language such as modern
Greek, which has a largely one-to-one correspondence.

To tackle this problem, we present a dictionary composed of
fragments. Some of these were pre-determined by us, using
morphological knowledge [6], others were derived automatically
from a lexicon of spellings and their corresponding phonemic
representations. We have called the resulting lexicon a filter
dictionary, because it constructs words from the input text out of
the largest fragments it has at its disposal. A result of this is that
the coverage of the dictionary is not unlimited, but the benefit is
that there is a very high accuracy level in transcription and
lexical stress assignment.

To ensure accurate lexical stress assignment as well as correct
phonemic transcription, English text-to-speech synthesisers
often make use of an on-line dictionary for the majority of their
grapheme-to-phoneme conversion. These typically contain
machine-readable phonemic representations of a given word,
including lexical stress notation, but their coverage is obviously
limited to only those words that are listed. If a word in the input
text is not contained in the lexicon, the system may access an
appendix dictionary and/or a set of letter-to-sound rules (LTS
rules). LTS rules typically work linearly through a word and
map a letter at a time onto a phoneme. Because of the density of
English spelling conventions however, such rules are usually
inaccurate, especially in assigning lexical stress correctly.

Alternatives to the dictionary + LTS approach include data-
driven models of grapheme-to-phoneme conversion. These

methods usually involve training algorithms on large,
transcribed corpora and deriving statistically likely
correspondences between grapheme and phoneme sequences.
There are numerous statistical techniques, but many are not
within the scope of this paper (e.g. neural networks [5], hidden
Markov models [7]), as they are by nature prohibitively large for
the memory and processing-time restrictions imposed by our
computer-telephony application. In addition, data-driven
techniques do not lend themselves well to user-definition of
phoneme strings, and we consider this to be crucial in coping
with non-standard pronunciations. Finally, there is a
fundamental weakness found in some implementations of data
driven techniques in grapheme-to-phoneme conversion. Despite
the fact that they are often trained on sets of data that do not
reflect all the possible letter sequences and corresponding
phoneme strings in the target language, they are still applied to
unlimited input text once the correspondences have been
retrieved. This means that inaccuracies or lack of coverage
inherent to the source data are built into the system. This reflects
poorly on the algorithm’s results, even though it might have
dealt perfectly with all sequences it had been trained on.

While we did use an algorithm to extract candidate mappings
from a source lexicon, we decided from the outset not to apply
the fragments generated from our relatively small set of data to
the entire language. This would only cloud the genuine results
(i.e. we wanted to know how the dictionary dealt with known
and novel words it should have been able to cope with). We
constructed our dictionary in such a way that - at least in
development - it would query letter sequences it had not
encountered before. Another difference between our approach
and many data-driven techniques is that we carried out some
manual editing on the results of the extractions, so that our
decisions were not dictated by statistical likelihoods that once
again might be corrupted by the limitations of the data.

The approach taken in designing this dictionary was also partly
motivated by the theory of pronunciation by analogy [3], in that,
where appropriate, use can be made of knowledge of the
pronunciations of certain words, in order to create a viable
pronunciation for a previously unseen word. It should be noted
however, that our method is not proposed as a psychological
model for reading aloud, nor do we claim that our system
currently provides unlimited coverage.

There are parallels between the filter dictionary and
morphological approaches as well [1]. However the filter
dictionary does not morphologically deconstruct input words. In
addition, while we did make use of morphological analysis, we
did not stipulate that all fragments in the dictionary must be
morphemic (we found that many consistent non-morphemic
correspondences exist). We also retained some elements of
small-unit and single grapheme-to-phoneme conversion where

appropriate, for cases where words could not be fully
constructed out of larger fragments. For input words made up
entirely of letter sequences that occurred in the original
dictionary, these were not expected to be accessed often, as
larger fragments should prevent the need for one-to-one
mappings.

It should be noted that we stipulated that accuracy of
transcription and stress assignment was more important than
coverage. LTS rules have unlimited coverage, but their accuracy
level is not high. The literature shows that systems that
completely replace LTS rules suffer similar problems as their
predecessors (e.g. context-driven HMMYs do not deliver
particularly high accuracy [8]). Prioritising compact flexibility
above accuracy seems to have an adverse effect on the system’s
results. The filter dictionary was built from a relatively small
source, so we knew from the outset that it would not have
unlimited coverage. According to our requirements though, the
filter dictionary must construct an accurate phonemic string that
includes accurate lexical stress assignment in one pass (as
opposed to [2], for example, where lexical stress is assigned
separately from the phoneme string). The prioritisation of
accuracy over coverage is not the usual approach but, as stated
previously, we view ensuring accurate transcription as being
more important than flexibility at this stage of development.

On the basis of these points, we set the following performance
targets for our dictionary:

i. Reduced lexicon size in memory.

ii. High level of phonemic transcription accuracy.

iii. High level of lexical stress assignment accuracy.

iv. Increased coverage beyond that of our simple lexicon.
v. User-definition allowed.

vi. Low CPU requirements.

2. BUILDING THE DICTIONARY.

We used the Aculab lexicon as the starting point for our filter
dictionary. This contains 60,000 words, each of which has an
accurate phonemic transcription and is marked for primary
lexical stress. The data was compressed, and the total size in
memory was 1.47 MB.

Using a left-to-right, longest match first algorithm (e.g.
preferably analyse ch as a unit rather than as ¢ followed by 4
individually), we aligned the graphemes with their phonemic
transcriptions. Lexical stress was not included in the alignment
process, because the letters that represent vowels are not
inherently stressed or unstressed. =~ When this had been
completed, we copied the lexical stress marks from the original
dictionary into the newly aligned dictionary. The intention was
to incorporate lexical stress assignment straight into the
fragments for use in the filter dictionary. This was chosen in
preference to using a separate stress-prediction algorithm, as
such methods do not seem to yield high success rates [2]. This
approach may have resulted in a higher number of fragments
than if stress had been ignored, but we felt that it was more
natural and efficient to retrieve the lexical stress and the
phonemic transcription simultaneously. The advantage of this
was that contexts that might dictate stress assignment (e.g. the
suffix /eil sh @ n/ always takes lexical stress, regardless of the

root’s stress conditions) or phonemic alternations (e.g. word
final ’s’ may be transcribed as /z/, /iz/ or /s/, depending on the
final segment of the root) were incorporated directly into the
fragments. Therefore, no run-time calculation was required.

To determine correspondences, we firstly used a program to
match known inflectional and derivational morphemes [6] to
candidate phonemic transcriptions from our aligned lexicon
(e.g. we found potential transcriptions for -al according to its
occurrences in the lexicon). The results were checked by hand,
and the transcription that we considered to be the most natural
was retained. To avoid incorporating effects of the original
dictionary’s limitations into the set of fragments, these
judgements were based on linguistic knowledge and intuitions
rather than frequency alone. The morphemes were then stored as
independent units in the dictionary, along with their
transcriptions.

Secondly we automatically identified other correspondences.
This was done by retrieving frequent alignments from the
Aculab lexicon. When the fragment was considered to be
reliable (i.e. it would not over-generate incorrect pronunciations
or incorrect lexical stress assignment), it was included. This
proved to be sufficiently effective that all but 11 of the manual
rules could be deleted as they were now either rendered
redundant by other fragments, or actually captured as fragments
by the algorithm.

The final dictionary provided various mappings from word-to-
phoneme, morpheme-to-phoneme, fragment-to-phoneme, and
single grapheme-to-phoneme. Redundant fragments (i.e.
fragments that were not used to build themselves and at least
one other word) were discarded. When this was completed, we
removed from the original lexicon all words that could be
successfully transcribed and stressed by the fragments.
Exceptions to the fragment correspondences were retained as
whole words.

The resulting lexicon contained 24,384 fragments, and occupied
470Kb in memory, a reduction of 59%. Had we not decided that
accurate lexical stress assignment should be an intrinsic part of
the dictionary, and aimed for accurate phonemic transcription
alone, then the size of the dictionary and the number of
fragments would be expected to be considerably smaller.

It should be noted that because the fragments had been built
from only 60,000 words (and assuming that these did not
represent all possible spelling sequences in English), novel letter
strings would cause the dictionary to fail. Only word-final or
word initial letters received one-to-one correspondences in the
fragment generation, so unlimited coverage was not expected. It
would be a trivial, but self-defeating task to incorporate LTS
rules into the dictionary. Unlimited coverage would be achieved,
but this would defeat the object of insisting on a high degree of
accuracy, and mask the actual results of the algorithm. This
apparent weakness in the dictionary’s coverage could be easily -
and better - overcome by exposing the algorithm to a larger
proportion of the language, because new fragments would be
built automatically to cope with novel letter strings. With
exposure to a large enough list of aligned spellings and
transcriptions, the filter dictionary should be able to build
suitable fragments to account for all spellings while maintaining
a low memory overhead. In effect, LTS rules are the conceptual

opposite of our approach, because they can transcribe any word,
but do not have a high accuracy rate.

The dictionary is also user-definable because a word with a
specific, non-standard pronunciation could be entered as a
fragment, and then derivations could be realistically built from
the non-standard pronunciation. An example of this is the
pronunciation of the name ‘Cholmondley’. If this was entered as
a fragment and transcribed as /ch uhl m 1 ii/, the filter
dictionary would be able to generate accurate phonemic
transcriptions and lexical stress assignments for potential
derivations such as ‘Cholmondleyism’, ‘Cholmondleyite’ etc.

3. TESTING THE DICTIONARY

Having established that the filter dictionary could accurately
transcribe 100% of the original lexicon while using less space,
we wanted to test how it dealt with new words.

We took 100 existing English words from Chambers English
Dictionary that did not appear in the original Aculab lexicon,
and tested them against the filter dictionary. We also devised
100 phonotactically valid pseudo-words (e.g. sclave), and
surveyed 50 peoples’ intuitive pronunciations of them. We made
a list of the most frequently proposed pronunciations and tested
it against the filter dictionary’s output. Finally, we tested the
filter dictionary against 100 possible derivations of words that
actually did appear in the original lexicon (some of these
derivations did not form real words, but the dictionary should be
able to transcribe such strings realistically if it has suitable
fragments at its disposal).

We expected the filter dictionary to struggle most in transcribing
the pseudo-words, because they required it to find
correspondences that it had never encountered. As the fragments
in the filter dictionary were devised from only the strings found
in the Aculab lexicon, many of the pseudo-word letter sequences
did not yet exist as fragments, so the dictionary was expected to
fail. The genuine word list tended to consist of more common
orthographic sequences, so it was expected that the dictionary
would more effectively deal with standard words whose letter
sequences had been incorporated as fragments. We expected the
dictionary to cope best with the derivations of words that were
contained in the original dictionary, because we knew that most
of the fragments would have been encountered before, even
though the whole words had never been included.

We measured the CPU requirements of the filter dictionary by
timing how long was required to look up and check (against the
original lexicon) every word in the filter dictionary (7'), the time
taken to read in all the fragments (77), and how long was
required to read in the original dictionary (72). As reading in the
fragments would not occur at run-time in the synthesiser, and
the original lexicon would not be required at all, processing time
was considered to be the T minus T1 minus T2 divided by the
whole number of words in the dictionary (N). This would yield
the average time to look up a word, build its transcription and
check it against the original dictionary. As we did not subtract
the time required to check the accuracy of a transcription as
well, the CPU time estimate is very conservative; the
transcription would not be checked against a control lexicon at
run-time:

Avg. CPUtime = T-T1-T2
N
4. RESULTS

The dictionary transcribed 18% of the pseudo-words, 29% of the
unknown Chambers Dictionary words, and 64% of the
derivations of known words. The dictionary failed when it had
to transcribe a letter sequence for which it had no stored
fragment. Very little difference would have been made to these
results if only accurate phonemic transcription had been
accepted. Firstly, lexical stress was an intrinsic part of the
fragments, and secondly, it was unknown phoneme sequences
that caused the failure rather than incorrect stress.

The transcriptions were accurate for 93% of the words that were
successfully constructed from the fragments. A transcription
was only deemed to be accurate if its phonemic transcription
and its lexical stress assignment were correct.

The average CPU time required to build and check a word’s
transcription on a 200MHz-Pentium processor was calculated.

4.65s - 1.55s - 0.51s = 42.9 x 105
60343

The average time is approximately 43 us. This is obviously
quick enough to maintain real-time processing in a speech
synthesis system.

5. DISCUSSION

As expected, the dictionary failed to produce a transcription
very frequently for unknown words. It failed if it was presented
with a new letter sequence. In terms of coverage, these are not
good results, but they are not worrying either, because they were
anticipated. As discussed previously, by preventing the
dictionary from building transcriptions for fragments it had not
previously encountered, we were aware that the coverage would
suffer. If the algorithm were exposed to a greater proportion of
the language, the resulting dictionary would have a very wide
coverage and a very favourable level of accuracy.

The fact that the output was accurate for phonemic transcription
and lexical stress for 93% of the words that were constructed is
highly encouraging when compared with other approaches
reported in the literature [2,8].

One important implication of the accuracy of the filter
dictionary is that it is possible to obtain both the phonemic string
and lexical stress correctly in one pass, as opposed to generating
a phoneme string in one pass, and employing a stress-
assignment algorithm in a second pass.

Phonemic context was also successfully incorporated directly
into the fragments, negating the need for left and right context
matching at run-time.

If suitably large lexicons of accurate transcriptions were not
available, it would be trivial to incorporate sets of LTS rules into
the filter dictionary instead. This would deliver 100% coverage

(so that the dictionary could be used in a real system), but the
accuracy level would inevitably drop. Likewise, we could have
manually included smaller fragments in the filter dictionary.
However, by prioritising accuracy above compression, the
algorithm exposed the inconsistencies in small unit
correspondences, so a similar problem would have arisen as if
we had used LTS rules.

The CPU time is very fast and, as the process is still a simple
look-up, the benefit to efficiency of excluding run-time
calculation (such as context-matching) is clear.

6. CONCLUSION

We aimed to build a dictionary that conformed to the six targets
specified in the introduction. All of those targets have been met.

i. We have succeeded in reducing the size of the original
lexicon - the filter dictionary is smaller than our previous
standard lexicon by 59%.

ii. We have maintained the phonemic accuracy for 100% of
the words that occurred in the original dictionary.

ili. We have successfully maintained accurate lexical stress
assignment for 100% of the original dictionary.

iv. For unknown words that the dictionary can currently
generate, there is an accuracy of 93% for phonemic
transcription and lexical stress assignment, so increased
coverage has been achieved also.

v. User-definition has been maintained, so any word whose
transcription is user-defined can still be employed by the
filter dictionary to create accurate derivations.

vi. CPU times are very fast - 1000 times faster than the
processing times reported in [2]. Although the processors
used by the two systems are different, it is unlikely that a
difference of this order is down to the processor alone.

Useful further work would include expanding the coverage of
the filter dictionary by training it on a larger proportion of
English spellings and transcriptions.

It would also be useful to apply an expanded version of the
dictionary to a standard corpus of English words so that it could
be compared to other methods (e.g. the ONOMASTICA corpus
[8]), and this is something we intend to do shortly.

Although this algorithm was designed to work on English, there
is nothing inherent in the system that would prevent it from
being used on any other language, as it should be capable of
automatically generating suitable fragments for the accurate
transcription of most alphabetic writing systems, provided it is
exposed to a suitably aligned source of transcribed words.

7. REFERENCES

1.Allen, J. "Synthesis of speech from unrestricted
text." Proceedings of the IEEE, 64. pp.433-442,
1976.

2.Bagshaw, P. "Phonemic transcription by analogy
in text-to-speech synthesis: Novel word
pronunciation and lexical compression.” Computer
Speech and Language, 12. pp.119-142, 1998.

3.Glushko, R.J. "Principles for pronouncing print:
the psychology of phonology." Interactive
processes in Reading. pp.61-84, 1981.

4.Landau, S.I and Ramson, W.S. (Eds.) "Chambers
English Dictionary, 7™ Edition" Chambers
Cambridge, 1989.

5.Lucas, S.M. and Damper, R.I. "Syntactic neural
networks for text-to-phonetics translation.”
Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, Vol.l.
pp.509-512

6.Marchand, H. "The categories and types of present
day English word formation." Beck, Munchen.
1969.

7.Parfitt, S.H. and Sharman, R.A. "A bi-directional
model of English pronunciation.” Proceedings of
the European Conference on Speech
Communication Technology (Eurospeech), Vol.2.
pp.801-804, 1991.

8.Yvon, F. "Self-learning techniques for grapheme-
to-phoneme conversion." Onomastica Research
Colloquium. London, 1994.

