NATURAL LANGUAGE CALL ROUTING:
A Robust, Self-Organizing Approach

Bob Carpenter

Jennifer Chu-Carroll

Lucent Technologies Bell Laboratories
600 Mountain Avenue, Murray Hill, NJ 07974, U.S A.

ABSTRACT

We have developed a domain independent, automatically trained,
call router which directs customer calls based on their response
to an open-ended “How may I direct your call?” query. Routing
behavior is trained from a corpus of transcribed and hand-routed
calls and then carried out using vector-based information retrieval
techniques. Terms consist of sequences of morphologically re-
duced content words. Documents representing routing destina-
tions consist of weighted term frequencies derived from calls to
that destination in the training corpus.

In this paper, we evaluate our approach in the context of a large
financial services call center with thousands of possible cus-
tomer activities and dozens of routing destinations. We evaluate
the system’s performance on ambiguous and unambiguous calls
when given either accurate transcriptions or fairly noisy real-time
speech recognizer output. We conclude that in a highly complex
call center, our system performs at roughly the same level of ac-
curacy as human operators.

1. INTRODUCTION

The call routing task involves directing a user’s call to the appro-
priate destination within a call center or providing some simple
information, such as loan rates. In current systems, the user’s
goals are typically gleaned via a touch-tone system employing a
rigid hierarchical menu. The primary disadvantages of navigating
menus for users are the time it takes to listen to all the options and
the difficulty of matching their goals to the options; these prob-
lems are compounded by the necessity of descending a nested hi-
erarchy of choices to zero in on a particular activity. Even simple
requests such as “I'd like my savings account balance” may re-
quire users to navigate as many as four or five nested menus with
four or five options each. We have developed an alternative to
touch-tone menus that allows users to interact with a call router in
natural spoken English dialogues just as they would with a human
operator.

Human operators respond to a caller request either by routing the
call to an appropriate destination, or by querying the caller for
further information to determine where to route the call. Our au-
tomatic call router has these two options as well as a third op-
tion of sending the call to a human operator. The rest of this
paper provides both a description and an evaluation of an au-
tomatic call router driven by vector-based information retrieval
techniques. After infroducing our fundamental routing technique,
we focus on the impact of speech recognition on performance. In
other papers, we provide details of the speech recognizer (Reichl
et al. 1998) and the disambiguation module (Chu-Carroll and Car-
penter 1998). The main advantages of our system are that 1) it is
domain independent, 2) it is trained fully automatically to both
route and disambiguate requests, and 3) in contrast to touch-tone
solutions, it performs at roughly the level of accuracy and effi-
ciency of human operators.

Name | Activity | Indirect
of calls 949 3271 277
% of all calls | 21.1% 72.7% 6.2%

Table 1: Semantic Types of Caller Requests

2. RELATED WORK

Call routing is similar to topic identification (see McDonough et
al. 1994) and document routing (see Schiitze et al. 1995) in iden-
tifying which one of n topics (destinations) most closely matches
a caller’s request. Call routing is distinguished from these activi-
ties by requiring a single destination, but allowing a request to be
refined in an interactive dialogue.

The only work on natural language call routing to date that we are
aware of is that by Gorin et al. (1997). They select salient phrase
fragments from caller requests, such as “made a long distance”
and “the area code for” . These fragments are used to determine
the most likely destination(s) for the request either by computing
the a posteriori probability for each call type or by passing the
fragments through a neural network classifier.

3. CORPUS ANALYSIS

We analyzed a set of 4497 transcribed telephone calls involving
customers interacting with human operators at a large call center
that provides financial services in hundreds of categories in the
general areas of banking, credit cards, loans, insurance and in-
vestments; we concentrated on the 23 destinations for which we
had at least 10 calls in the corpus.

The operator provides an open-ended prompt of “How may I di-
rect your call?” We classified user responses into three cate-
gories. First, callers may explicitly provide a destination name,
either by itself or embedded in a complete sentence, such as “may
I have consumer lending?”. Second, callers may describe the
activity they would like to perform. Such requests may be un-
ambiguous, such as “I'd like my checking account balance”, or
ambiguous, such as “car loans please”, which in our call center
can be resolved to either consumer lending, which handles new
car loans, or to loan services, which handles existing car loans.
Third, a caller can provide an indirect request, in which they de-
scribe their goal in a roundabout way, often including irrelevant
information. Table 1 shows the distribution of caller request in our
corpus. For the vast majority of calls, the request was based on
destination name or activity. Our strategy was to detect and reject
indirect queries and either re-prompt or route them to a human
operator for handling.

We also analyzed the operator’s responses to caller requests to de-
termine the dialogue actions needed for response generation in our
automatic call router. We found that in the call routing task, the
call operator either notifies the customer of the routing destina-
tion or asks a disambiguating guery. Table 2 shows the frequency
that each dialogue action should be employed based strictly on
the presence of ambiguity in the caller requests in our corpus. We

Notification Query
NP Others
of calls 3608 657 232
% of all calls 80.2% 14.6% 5.2%

Table 2: Call Operator Dialogue Actions

further analyzed those calls considered ambiguous within our call
center and noted that 75% of such ambiguous requests involve
an underspecified noun phrase (NP), such as requesting car loans
without specifying whether it is an existing or new car loan. The
remaining 25% of the ambiguous requests involve underspecified
verb phrases, such as asking to transfer funds without specifying
the types of accounts to and from which the transfer will occur,
or missing verb phrases, such as asking for direct deposit without
specifying whether the caller wants to ser up or change an existing
direct deposit.

4. TRAINING

Our training corpus consists of 3753 calls each of which is hand-
routed to one of 23 destinations.! Our first step is to create one
(virtual) document per destination, which contains the text of the
callers’ contributions to all calls routed to that destination.

We filter each (virtual) document through the morphological pro-
cessor of the Bell Labs’ Text-to-Speech synthesizer (see Sproat,
ed. 1998) to extract the root form of each word in the corpus.
Next, the root forms of caller utterances are filtered through two
lists, the ignore list and the stop list, in order to build a better
n-gram model. The ignore list consists of noise words, such as
uh and um, which sometimes get in the way of proper n-gram
extraction, as in “I'd like to speak to someone about a car uh
loan” . With noise word filtering, we can properly extract the bi-
gram “carloan” . The stop list enumerates words that do not dis-
criminate between destinations, such as the, be, and afternoon.
We modified the standard stop list distributed with the SMART
information retrieval system to include domain specific terms and
proper names that occurred in the training corpus (see Salton
1971). Note that when a stop word is filtered out of the caller ut-
terance, a placeholder is inserted to prevent the words preceding
and following the stop word to form n-grams. For instance, after
filtering the stop words out of “I want to check on an account”,
the utterance becomes “<sw> <sw> <sw> check <sw> <sw>
account” . Without the placeholders, we would extract the bigram
“check,account”, just as if the caller had used the term check-
ing account. We extract the n-gram terms that occur more fre-
quently than a pre-determined threshold and do not contain any
stop words. Our current system uses unigrams that occurred at
least twice and bigrams and trigrams that occurred at least three
times in the corpus. No 4-grams occurred three times. Employing
this strategy, we found 420 unigram terms, 275 bigram terms, and
62 trigram terms.

Once the set of relevant terms is determined, we construct an m X
n term-document frequency matrix A whose rows represent the
m terms, whose columns represent the n destinations, and where
an entry A; 4 is the frequency with which term ¢ occurs in calls to
destination d.

It is often advantageous to weight the raw counts to fine tune the
contribution of each term to routing. We begin by normalizing
the row vectors representing terms by making them each of unit

IThese 3753 calls are a subset of the corpus of 4497 calls used in
our corpus analysis. We excluded those ambiguous calls that were not
resolved by the operator.

length. Thus we divide each row A; in the original matrix by
its length, (3, ... Af,e)l/ 2. Our second weighting is based
on the notion that a term that only occurs in a few documents is
more important in discriminating among documents than a term
that occurs in nearly every document. We use the inverse docu-
ment frequency (IDF) weighting scheme (see Sparck Jones 1972),
under which a term is weighted inversely to the number of doc-
uments in which it occurs, by means of IDF(t) = log, n/d(t)
where ¢ is a term, n is the total number of documents in the cor-
pus, and d(¢) is the number of documents containing the term ¢.
Thus we obtain a weighted matrix B, whose elements are given

by Bea = Ava X IDF()) /(3 oo, Abe) .

To reduce the dimensionality of our vector representations for
terms and documents and cast them into the same vector space,
we applied the singular value decomposition to the m X n ma-
trix B of weighted term-document frequencies (see Deerwester et
al. 1990). Specifically, we take B = USV'™, where U is an m x
matrix (where r is the rank of B), V' is an n X r matrix, and S is an
r X r diagonal matrix such that s1,1 > s22 > -+ > s, > 0. We
think of each row in U as an r-dimensional vector that represents
a term, whereas each row in V' is an r-dimensional vector repre-
senting a document. With appropriate scaling of the axes by the
singular values on the diagonal of S, we can compare documents
to documents and terms to terms using their corresponding points
in this new r-dimensional space (see Deerwester et al. 1990). For
instance, to employ the dot product of two vectors as a measure of
their similarity as is common in information retrieval (see Salton
1971), we have the matrix BT B whose elements contain the dot
product of document vectors. Because .S is diagonal and U is
orthonormal, BTB = V§*VT = VS(VS)T. Thus, element
i, in BT B, representing the dot product between document vec-
tors ¢ and j, can be computed by taking the dot product between
the ¢ and j rows of the matrix V'S. In other words, we can con-
sider rows in the matrix V'S as vectors representing documents
for the purpose of document/document comparison. An element
of the original matrix B; ;, representing the degree of association
between the ¢th term and the jth document, can be recovered by
multiplying the ith term vector by the jth scaled document vector,
namely B; ; = U;((VS);)T.

5. ROUTING

Our call router consists of two components: the routing module
and the disambiguation module. The routing module takes a caller
request and determines a set of destinations to which the call can
reasonably be routed. If there is exactly one such destination, the
call is routed there and the customer notified; if there are multiple
destinations, the disambiguation module is invoked in an attempt
to formulate a query; and if there is no appropriate destination or
if a reasonable disambiguation query cannot be generated, the call
is routed to an operator. Figure 1 shows a diagram outlining this
process.

The focus of this paper is on the routing module, which begins
with term extraction.. Given a transcription of the caller’s ut-
terance (either from a keyboard interface or from the output of a
speech recognizer), the first step is to extract the relevant n-gram
terms from the utterance. For instance, term extraction on the re-
quest “I want to check the balance in my savings account” would
result in one bigram term, “saving,account”, and two unigrams,
“check” and “balance” .

The next step in routing is pseudo-document generation. Given
the extracted terms from a caller request, we can represent the
request as an m-dimensional vector) where each component

Caller Request

Routing Module

Candidate Destinations

Routing ! #of 0
Notification W
Caller
Response
Disambiguation Module
Potential Query
Disambiguating _Y°S Query No Human
Query Operator

! —
W

Figure 1: Call Router Architecture

Qi represents the number of times that the ith term occurred in
the caller’s request. We then create an r-dimensional pseudo-
document vector D = QU , following standard methodology (see
Deerwester et al. 1990). Note that D is simply the sum of the term
vectors U; for all terms occurring in the caller’s request, weighted
by their frequency of occurrence in the request, and is scaled prop-
erly for document/document comparison.

Next, we perform scoring. Once the vector D for the pseudo-
document is determined, we compare it with the document vectors
by computing the cosine between D and each scaled document
vectors in V' S. Next, we transform the cosine score for each des-
tination using a sigmoid function specifically fitted for that des-
tination to obtain a confidence score that represents the router’s
confidence that the call should be routed to that destination.

The reason for the mapping from cosine scores to confidence
scores is because the absolute degree of similarity between a re-
quest and a destination, as given by the cosine value between
their vector representations, does not translate directly into the
likelihood for correct routing. Instead, some destinations may
require a higher cosine value, i.e., a closer degree of similarity,
than others in order for a request to be correctly associated with
those destinations. Thus we collected, for each destination, a set
of cosine value/routing value pairs over all calls in the training
data, where the routing value is 1 if the call should be routed to
that destination and 0 otherwise. Then for each destination, we
used the least squared error method in fitting a sigmoid function,

1/(1 4+ e~(@=+9) 1o the set of cosine/routing pairs.

We tested the routing performance using cosine vs. confidence
values on 307 unseen unambiguous requests. In each case, we
selected the destination with the highest cosine/confidence score
to be the target destination. Using strict cosine scores, 92.2% of
the calls are routed to the correct destination. On the other hand,
using sigmoid confidence fitting, 93.5% of the calls are correctly
routed. This yields a relative reduction in error rate of 16.7%.

The fourth step in the routing process involves deciding what to
do with the scoring results. The outcome of the routing mod-
ule is a set of destinations whose confidence scores are above a
pre-determined threshold. These candidate destinations represent
those to which the caller’s request can reasonably be routed. If
there is only one such destination, then the call is routed and the
caller notified; if there are two or more possible destinations, the
disambiguation module is invoked in an attempt to formulate a
query; otherwise, the the call is routed to an operator.

To determine the optimal value for the threshold, we ran a se-

% Correct

Upperbound —=—
e owebowd -
0 01 02 03 04 05 06 07 08 09
Threshold

Figure 2: Router Performance vs. Threshold

Is request actually unambiguous?

2

Is call routed by router? Is call routed by router?

A

correct? contains correct? one of possible? overlaps with possible?
yey &10 ye% wo yey NIO ye% \10
1a 1b 2a 2b 3a 3b 4a 4b
Figure 3: Classification of Router Outcome

ries of experiments to compute the upperbound and lowerbound
of the router’s performance varying the threshold from 0 to 0.9 at
0.1 intervals. The lowerbound represents the percentage of calls
that are routed correctly, while the upperbound indicates the per-
centage of calls that have the potential to be routed correctly af-
ter disambiguation (see section 6. for details on upperbound and
lowerbound measures). The results in Figure 2 show 0.2 to be the
threshold that yields optimal performance.

Our system employs the same vector-based representations of
terms and documents in order to generate clarification questions
in order to disambiguate vague or ambiguous user queries. This
process is described and evaluated in (Chu-Carroll and Carpenter
1998).

6. EVALUATION

We performed an evaluation of the routing module of our call
router on a fresh set of 389 calls disjoint from the training cor-
pus. Of the 389 requests, 307 were unambiguous and routed to
their correct destinations, and 82 were ambiguous and annotated
with a list of candidate destinations. Unfortunately, in this test
set, only the caller’s first utterance was transcribed. Thus we have
no information about where the ambiguous calls should be routed
after disambiguation.

The routing decision made for each call is classified into one of
8 groups, as shown in Figure 3. For instance, group la contains
those calls which are actually unambiguous, are considered un-
ambiguous by the router, and are routed to the correct destination.
On the other hand, group 3b contains those calls which are actu-
ally ambiguous, are considered by the router to be unambiguous,
and are routed to a destination which is not one of the potential
destinations.

We evaluated the router’s performance on three subsets of our test
data: unambiguous requests alone, ambiguous requests alone, and

Unambiguous Ambiguous All
Requests Requests Requests
LB 1a/(1+2) 4a/(3+4) (Ta+4a)/all
UB (1a+2a)/(1+2) (3a+4a)/(3+4) | (la+2a+3at+4da)/all

Table 3: Calculation of Upperbounds and Lowerbounds

Unambiguous | Ambiguous All
Requests Requests Requests
LB 80.1% 58.5% 75.6%
UB 96.7% 98.8% 97.2%

Table 4: Transcription Results, no rejection, threshold = 0.2

all requests combined. For each set of data, we calculated a lower-
bound performance, which measures the percentage of calls that
are correctly routed, and an upperbound performance, which mea-
sures the percentage of calls that are either correctly routed or
have the potential to be correctly routed. Table 3 shows how the
upperbounds and lowerbounds are computed based on the classi-
fication in Figure 3 for each of the three data sets. For instance,
for unambiguous requests (classes 1 and 2), the lowerbound is
the number of calls actually routed to the correct destination (1a)
divided by the number of total unambiguous requests, while the
upperbound is the number of calls actually routed to the correct
destination (1a) plus the number of calls which the router finds to
be ambiguous between the correct destination and some other des-
tination(s) (2a), divided by the number of unambiguous queries.
The calls in category 2a are considered to be potentially correct
because it is likely that the call will be routed to the correct desti-
nation after disambiguation.

Table 4 shows the upperbound and lowerbound performance for
each of the three test sets on the transcribed text of the callers’
utterances. These results show that the system’s overall perfor-
mance in the case of perfect recognition will fall somewhere be-
tween 75.6% and 97.2%. The actual performance of the system
is determined by two factors: 1) the performance of the disam-
biguation module, which determines the correct routing rate of the
16.6% of the unambiguous calls that were considered ambiguous
by the router (class 2a), and 2) the percentage of calls that were
routed correctly out of the 40.4% ambiguous calls that were con-
sidered unambiguous and routed by the router (class 3a). Note
that the performance figures in Table 4 are the result of 100% au-
tomatic routing, since no request in our test set failed to evoke
at least one candidate destination. In (Chu-Carroll and Carpenter
1998), we evaluate the performance of the disambiguation mod-
ule, which determines the overall system performance, and show
how allowing calls to be rejected and punted to operators affects
the system’s performance.

We also evaluated our system on the output of a large vocabu-
lary, speaker independent, continuous speech recognition system.
The recognizer is described in detail in (Reichl et al. 1998). Here
we simply repeat the precision and recall scores for content term
extraction, because these are the only terms whose correct recog-
nition affects routing performance. Our unigram precision/ recall
was 94.1%/87.9%, our bigram precision/recall was 96.9%/85.4%
and our trigram precision/recall was 98.5%/84.3%. Thus our rec-
ognizer completely misses around 12% of all relevant content
terms, but is quite reliable when it hypothesizes a content term,
especially a bigram or trigram.

One potential effect of missing n-gram terms is that the call router
no longer has sufficient information to route unambiguous calls.
Furthermore, a possible effect of extra n-gram terms is that they

Unambiguous | Ambiguous All
Requests Requests Requests
LB 77.9% 47.6% 71.5%
UB 90.6% 86.6% 89.7%

Table 5: ASR Results, no rejection, threshold = 0.2

may be added to an otherwise unambiguous set of terms, causing
uncertainty in routing. We tested this hypothesis by comparing
the number of calls that are considered ambiguous by the router
when using transcription versus ASR results as input. On our test
set, we found that the number of calls classified as ambiguous
rises from 26.7% on transcriptions to 27.8% on ASR output.

In Table 5, we provide an evaluation on ASR output in the same
format as the transcription results in Table 4, using the same
threshold of 0.2 and no rejection. We show, in (Chu-Carroll and
Carpenter 1998), that the effect of rejecting 10% of the calls to
a human operator significantly increases performance on tran-
scribed calls; similar effects hold for queries processed by speech
recognition.

7. CONCLUSION

Our primary conclusion is that it is time to replace touch-tone
menu systems with spoken language understanding systems.

We described and evaluated a domain independent, automatically
trained call router that is able to route calls and engage in dis-
ambiguation dialogues. We have demonstrated that the system is
robust in the face of noise introduced by ASR: with no rejection,
the lowerbound on performance drops from 75.6% to 71.5%, and
the upperbound (after disambiguation) drops from to 97.2% to
89.7%.

REFERENCES

Chu-Carroll, J. and B. Carpenter. 1998. Dialogue management in
vector-based call routing. In ACL/COLING ‘98, 256-262.

Deerwester, S., S. Dumais, G. Furnas, T. Landauer, and R. Harsh-
man. 1990. Indexing by latent semantic analysis. Journal of
the American Society for Information Science, 41:391-407.

Gorin, A., G. Riccardi, and J. Wright. 1997. How may I help
you? Speech Communication, 23:113-127.

McDonough, J., K. Ng, P. Jeanrenaud, H. Gish, and J. R.
Rohlicek. 1994. Approaches to topic identification on the
switchboard corpus. In ICASSP ‘94, 385-388.

Reichl, W., B. Carpenter, J. Chu-Carroll, W. Chou. 1998. Lan-
guage modeling for content extraction in human-computer
dialogues. In ICSLP ‘98. Sydney.

Salton, G. 1971. The SMART Retrieval System. Prentice Hall.

Schiitze, H., D. Hull, and J. Pedersen. 1995. A comparison
of classifiers and document representations for the routing
problem. In SIGIR ‘95.

Sparck Jones, K. 1972. A statistical interpretation of term speci-
ficity and its application in retrieval. Journal of Documenta-
tion, 28:11-20.

Sproat, R., editor. 1998. Multilingual Text-to-Speech Synthesis:
The Bell Labs Approach. Kluwer.

