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ABSTRACT

This paper presents a time-scale pitch-scale modification
technique for concatenative speech synthesis. The method is
based on a frequency domain source-filter model, where the
source is modeled as a mixed excitation. This model is highly
coupled with a compression scheme that result in compact
acoustic inventories. When compared to the approach in the
Whistler system using no mixed excitation, the new method
shows improvement in voiced fricatives and over-stretched
voiced sounds. In addition, it allows for spectral manipulation
such as smoothing of discontinuities at unit boundaries, voice
transformations or loudness equalization.

1. INTRODUCTION

In recent years, data-driven approaches, such as concatenative
synthesis, have achieved a high degree of naturalness for
speech synthesis. While these speech units are often tediously
extracted by human experts, there are some automatic ways of
generating them [3][6] [7]. While there are systems that do not
modify the waveform [7], in many cases the speech units have
to be synthesized with a different prosody than that of the
original database.

A very popular technique of doing prosodic modification of a
speech unit is the so-called Time-Domain Pitch-Synchronous
Overlap-and-Add (TD-PSOLA) [11]. This approach can
perform prosody modification on a speech segment with
excellent quality, and the original speaker’s characteristics are
retained. On the other hand, it cannot do any spectral
manipulation, which is often needed to smooth out spectral
discontinuities at unit boundaries, because it operates in the
time domain. This approach typically repeats pitch periods
when a unit needs to be lengthened, which can result into
buzziness, particularly for voiced fricatives. Moreover, for
many practical applications the acoustic inventory needs to be
compressed, which is done independently of the PSOLA
algorithm, therefore leading to degradation in the output
quality.

Several approaches have been proposed to address the
deficiencies of TD-PSOLA. The system described in [12] uses
an LPC model to smooth out transitions. LP-PSOLA [11]
performs the PSOLA on the residual signal obtained after LPC
filtering allowing modification of its LPC parameters.
Synthesis based on the sinusoidal model [2][9] allows more
control over the spectrum. The MBROLA [4] approach uses
TD-PSOLA on segments that have constant pitch and phase of
their harmonics, which results in an efficient implementation

and allows for smoothing across unit boundaries. The
Harmonic plus Noise Model (HNM) [13] has been proposed to
combat buzziness in voiced fricatives in addition to allow
spectral smoothing.

The objective of this paper is to derive a method that can (a)
allow for spectral manipulation, (b) be compact and (c) can
achieve lengthening of unvoiced and voiced fricatives without
buzziness. In this paper we describe one technique we have
experimented with to improve the speech synthesis quality of
Microsoft’s Whistler (Windows Highly Intelligent Stochastic
TaLLkER). One version of the Whistler TTS system [6] can be
downloaded from Microsoft Research’s web site as part of the
Speech SDK [10].

This paper is organized as follows. Section 2 presents the
baseline source-filter model, which is then enhanced in Section
3 to include mixed-excitation frequency domain processing.
Section 4 deals with parameter estimation, Section 5 with
acoustic compression and Section 6 with decompression and
synthesis. Finally an evaluation is presented in Section 7, after
which we summarize our major findings and outline future
work.

2. SOURCE-FILTER MODEL

In this section we’ll present a reformulation of the well known
TD-PSOLA algorithm [11] for prosody modification in a
framework of a source-filter model. This will let us later
extend this to a more general model of mixed excitation in the
frequency domain.

First, let’s define the input signal as x{n], and a set of time
marks {tm, m =—<><>,...,<><>}. Let’s further define a local
version of x{n] centered at time f,, as x,[n]=xt, +n].
We can then define y,[7]as a short-time version of x,,[#]
by multiplying it by a window w,, [n]

Vulnl=w,,[nx,,[n] M
where the window w,,[n] is O for |n| >N /2, with N being

the window length. Then we can define X[n] as

Fnl= Y y,ln—t,] @

mM=—c0

which is an approximation of x[#]. We can express (2) as a
convolution of an impulse train with a time-varying filter:



Fnl= Y 8,In—1,1%y,nl 3
I=—oo
The time-varying filter y, [7] can also be expressed in the
frequency domain by taking the N-point FFT as:
N/2
Y, [1= ) y,[nlexp(-2mk | N) (4)
n=—-~N/2

Fig. 1 shows (3) and (4) in a block diagram.
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Figure 1. Approximation of x[n] as an impulse train
driving a time-varying filter.
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A good choice for the time marks £, is to coincide with the

epochs in the signal. Epochs are the instants of closing of the
vocal folds, and indicate the periodicity of speech. For
unvoiced speech, these marks could be arbitrarily placed.
Epoch estimation from speech waveforms is a very difficult
problem, but it can be done quite accurately using
electroglotograph (EGG) signals [1].

Given the pitch synchronous time marks ¢, , a good choice for

w,,[7] is, for example, a Hanning window

0.5+0.5cos(m/L(m)) |n|< L(m)
w,[n]= &)
0 |n| > Lm)
with L(m) being defined as
L(my=min(t,, —¢t,,_;,t,1 —tn-N/2) (6

The use of a symmetric window makes perfect reconstruction

time marks ¢

impossible, unless -

are equally spaced

(impossible in real speech). In addition, truncation will occur if
these time marks are spaced more than N/2 apart (very long
pitch periods). Nevertheless, it was empirically observed that
this approximation X[n] computed from (3) was perceptually

indistinguishable from the original signal x[n] for real speech
signals. A necessary condition for this is that the marks are not
spaced more than 10ms in unvoiced regions, to preserve time
resolution for stops.

The above is analysis-resynthesis but prosody modification
implies pitch-scale and time-scale modification of the segment
simultaneously. In synthesis, re-sampling is necessary at a time

sequence t;, different than that of analysis. This involves
computing a mapping t,'” = f(t,,), that assigns an analysis
epoch to different synthesis epoch [11], and typically involves
repeating or removing a filter y,,[7] for some pitch periods.

Lengthening unvoiced sounds or voiced fricatives results in
buzziness. Since it is accomplished by repeating frames, it can
cause undesired periodicity at high frequencies. Reversing the
repeated frame for unvoiced sounds [11] allows for lengthening
by a factor of 2. Lengthening voiced fricatives results in
buzziness by creating an artificial periodicity at high

frequencies. One possibility suggested in [11] is to interpolate
frames instead of repeating them, but this would attenuate the
aspiration component.

3. MIXED EXCITATION MODEL

In this section we present a frequency-domain mixed-excitation
model as a solution to the lengthening problems of the model
described in Section 2. One way of removing that lengthening
restriction for unvoiced frames is to generate random noise
shaped by the power spectrum for that frame.. In fact, we have

observed that replacing y,[n] by random noise with the

power spectrum of Y, [k] doesn’t result in any perceptual
degradation in practice.

To address the lengthening problems for voiced fricatives we
propose in Fig. 2 a mixed excitation model, which has a switch
to produce purely unvoiced sounds and mixed excitation
sounds. The voiced and unvoiced components of a voiced sound
can then be processed independently. The goal is that if a
voiced fricative needs to be lengthened, the noisy component
can be independently generating random noise, which will not
lead to buzziness. To lengthen voiced sounds, we don’t need to
repeat pitch frames, which can result in a metallic sound,
rather we interpolate frames instead.
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Figure 2. Mixed excitation speech production model.
For unvoiced sounds, Gaussian random noise is filtered
by a time-varying filter. For voiced sounds, the signal is
the sum of a voiced and an unvoiced components.
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To obtain natural sounding speech, we need to estimate all the
time-varying filters in Fig. 2 from input speech. We should also
note that while the system in Fig. 2 is not a minimal system,
it’s advantageous from the point of view of estimation and
compression of its parameters, as will be shown in the next
sections.

4. PARAMETER ESTIMATION

This section deals on how to estimate the parameters in the
model of Fig 2. While there are many possible ways of doing
this, including through LPC and cepstral analysis [1], we

estimated H ,,[k] as the magnitude spectrum:
H,[k1=|V,,[k] ™

With the excitation then computed as



Y, [k]
E, [k]=—2— 8
mlk] 1 1] ®)
and then further decomposed as
E [k]1=V,[k]+U,[k] ®

where V, [k] is the voiced component and U, [k] the

unvoiced component.

The voiced component V,, [k] can be characterized because it

evolves slowly over time. Therefore, similarly to the approach
taken in Waveform Interpolation coding schemes [8], it can be

estimated by low-pass filtering F, [k] over the time index m.

The unvoiced component U, [£]

E, [k]1=V, [k].

is then computed as

We then just keep the magnitude spectrum of U, [k] and
synthesize it by:

U, k1=|U, [k]WIk] (10)

where W[k] is a complex random vector derived from a zero-

mean unity-variance Gaussian distribution.

In [8], the same time constant is used to low pass filter all
frequencies. We have observed that by doing this, we can
smooth out sharp spectral transitions that often occur in natural
speech, which results in distortion. Moreover, the unvoiced
component in those cases is also overestimated, which leads to
additional noise. To avoid this, and given the fact that typically
there is very little aspiration or unvoiced component at low
frequencies, we use different low-pass time constants for
different frequencies. In particular, we do not low-pass filter
frequency components below 3kHz at all.

5. ACOUSTIC COMPRESSION

A speech synthesis system needs to store a large number of
speech units. In practice this requires the units to be
compressed, which will lead to some degradation in the
synthesized signal. Traditionally speech compression and
prosody modification algorithms are done independently, so
that each step adds distortion. By integrating the compression
with the prosody modification, higher efficiency can be
achieved. In this section we describe one possible way of doing
such compression.

To compress H ,,[k], we opt for gain-shape quantization with

a product code VQ [5]. To do this we divide the vector into R,
sub-bands with bandwidths approximating the Bark-scale,
since this has been successfully used in audio coding [14]. The
average log-energy in each band is computed as

. 1 Ui
Gl =—— % InH[k 11
; (u,-—l,-+1),;,in [k] (11

where /; and u; are the lower and upper bins for sub-band i.

The average energy in frame m is the average for all sub-bands:

=

G, =— ZG,’;, (12)
R, i=0

after which the gain-normalized H Lk] is defined as
H, [k]=H,[klexp(-G,,) (13)

The gain G,, is scalar quantized to ém. Each sub-band r is

then vector quantized to minimize the FEuclidean distance
between the logarithm of the frequency bins:

i’ = argmin Z (1og H, [k]-log C,."[k])z (14)
)

with C ,’ [£] being the codeword i in codebook r, and i ,’n is the

codeword with minimum distance, so that H, k] can be

quantized as
I, 1k1= L3 1k - A (s)

The voiced component V, [k] is vector-quantized with R, sub-
bands similarly to how it is done for H LK1, but using plain

Euclidean distance. We need to note that unlike for H. WLk,

we have to quantize a complex vector instead of a real one,
which doubles the dimension of the codebook. We need to

handle V,, [k] as a complex vector because we want to retain

both the magnitude and the phase of the voiced component.

We also vector-quantize the magnitude spectrum of the
unvoiced component |U . [k]|. We have found that using a

single band is sufficient in practice, since little detail is
necessary for the unvoiced spectral component.

For a 22kHz sampling rate, a choice of N = 5/2 and R, = R, =
12 was found to be a reasonable tradeoff. This representation
resulted in a compact acoustic inventory.

6. DECOMPRESSION AND SYNTHESIS

Decompression and resynthesis with prosody modification is

accomplished as follows:

1. Decompress G,,, I—Tm[k], (V,,[k] and |Um[k]| also
for voiced frames) for the input epoch sequence ¢, by
doing table look-ups.

2. Compute t,=f(,)
following [11].

3. Compute G,, H,[k], (V,[k] and |U,,[k] also
for voiced frames) for the output epoch sequence.
Instead of repeating parameters when lengthening is
needed, interpolation is used at all times. See below
for details.

4. Synthesize output frame by computing the complex

output epoch sequence

spectrtum Y, [k] (according to Fig. 2), taking an
inverse FFT to obtain y,[n] and overlap-add

according to (2).



The interpolation is step 3 1is not just between the
corresponding two input frames, but rather between all input
frames in an N-sample window. This acts as a low-pass filter
on the filter coefficients that reduces the quantization noise.
Both a rectangular window and an exponential window gave
satisfactory results. A time constant of less than 20ms was
found to be beneficial in reducing the quantization noise,
particularly for voiced sounds, without noticeably distorting the
synthesized signal.

The same low-pass filtering can be done across unit boundaries
to reduce the spectral discontinuities present in a concatenative
synthesizer such as Whistler. A large time constant is needed to
completely smooth out bad transitions, but this was observed to
increase distortion in the output. A compromise in the low pass
filter time constant can be achieved that reduces somewhat the
discontinuity, yet doesn’t increase the noise in the synthesized
signal. Another possibility would be to use a longer time
constant only around the concatenations if a large discontinuity
was noticed, though this remains future work to be done.

Since the information is in the frequency domain, we can do
other manipulations easily. For example we can equalize the

signal by multiplying fm [£] by another transfer function. This

is useful also when implementing loudness, since soft speech
tends to have greater spectral tilt. We can also simulate
different vocal tract shapes by simply warping all the filters in
Fig. 2. This warping can be implemented as a non-linear
mapping between the input and output frequencies, and it
results in realistic voices. Finally, we can increase the level of
breathiness by simply increasing the gain on the unvoiced
component, or adding more noise.

7. EVALUATION

We conducted an informal evaluation by doing a preference test
between the new frequency-domain synthesizer and a previous
one [1] based on LPC parameters with a residual and no mixed
excitation. In both cases, the synthesis units were derived in an
automatic way [6] and natural prosody was used. A total of 6
subjects listened to 20 utterance sets and all of them preferred
the new mixed-excitation system.

The mixed-excitation speech was less noisy, particularly when
listened through headphones. Voiced fricatives were more
natural, and those vowels exhibiting a metallic sound
(typically when several pitch periods were repeated) before
were improved as well. While the distortion at the
concatenation point was somewhat reduced, this wasn’t
significant. Since this is the largest cause of distortion, there is
still a lot to improve.

8. SUMMARY

We have presented a mixed-excitation frequency domain
technique to do time-scale and pitch-scale modification that
improves the quality of unvoiced sounds, voiced fricatives and
over-stretched sounds. This approach also reduces quantization
noise by integrating the acoustic compression into the prosody
modification algorithm. While frequency-domain processing
makes smoothing of spectral discontinuities at unit boundaries

easy, more work remains to be done in this area to bridge the
gap with recorded speech.
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