AUTOMATIC DETECTION OF SENTENCE BOUNDARIES AND
DISFLUENCIES BASED ON RECOGNIZED WORDS
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ABSTRACT

We study the problem of detecting linguistic events at interword
boundaries, such as sentence boundaries and disfluency locations,
in speech transcribed by an automatic recognizer. Recovering
such events is crucial to facilitate speech understanding and other
natural language processing tasks. Our approach is based on
a combination of prosodic cues modeled by decision trees, and
word-based event N-gram language models. Several model com-
bination approaches are investigated. The techniques are eval-
vated on conversational speech from the Switchboard corpus.
Model combination is shown to give a significant win over in-
dividual knowledge sources.

1. INTRODUCTION

Current automatic speech recognition systems output a string
of words. Most natural language understanding systems, how-
ever, require structural information such as punctuation, which
is present in text but not overtly indicated in spoken language.
Similarly, for speech understanding and information extraction,
it is important to find the location and extent of disfluencies (in-
cluding self-repairs), so that a speaker’s intended meaning can be
inferred. We will refer to sentence boundaries and disfluencies
collectively as our target “events.”

Prior work on utterance boundary detection [8, 12] as well as on
disfluency detection [S5, 10] has addressed this problem, but not
in a completely realistic framework. Previous work has assumed
either a correct word sequence, or knowledge of the word bound-
aries. In reality, word information is not known, but has to be
hypothesized using a speech recognizer. This renders word-based
cues less reliable and increases the importance of prosodic cues.
It also raises the question of how the various cues are to be com-
bined taking unreliable word information into account.

2. METHOD
2.1. Data

Speech data consisted of more than 1100 conversations from the
Switchboard corpus of human-human telephone dialogs on pre-
scribed topics [4]. The data set represents over 350 different
speakers (45% male, 55% female). The corpus was partitioned
into three portions: 1794 conversation sides (1.2M words) were
used for model training; 436 conversation sides (231K words)
were used for development and testing on data that had been tran-
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| Event class | Tag | Freq. | Example |
Sentence S 10.8% I haven’t seen it #
boundary Not sure I like it
Filled pause FP 2.9% | heuh x* liked it
Repetition REP 1.9% | he * he liked it
Deletion DEL 1.3% | it was * he liked it
Repair OthDF 1.2% | he * she liked it
Else/fluent else 81.8% | she * liked it

Table 1: Boundary and disfluency event classes.

scribed by humans; and a small, 19 conversation (18K words)
set was decoded with a large-vocabulary speech recognizer and
used for tests that involved automatic transcription. There was no
speaker overlap between the three corpus subsets.

We prepared a speech database that combines information from
various sources, and at various levels of resolution, including:

e Word transcripts

e Hand-labeled disfluency annotations and sentence segmen-
tations prepared by the Linguistic Data Consortium [9]

e Phone-level time marks produced by forced alignment of
the word transcripts using a non-speaker-adapted version of
the SRI Decipher(TM) speech recognizer used in the 1997
LVCSR evaluations [7]

e Raw acoustic measurements for the prosodic features de-
scribed below, such as fundamental frequency (FO) and
signal-to-noise ratio (SNR) values.

The resulting database contained all information in a time-aligned
format. For the automatically transcribed test set we created the
alignments and derived information for the top 100 hypotheses
generated by the recognizer.

For this study, we grouped the linguistic events at word bound-
aries into six classes, comprising the major types of boundaries
and disfluencies we were interested in. These events are mutually
exclusive, and exactly one event occurs at any given interword
boundary. Table 1 summarizes these event classes, their relative
frequencies, and gives an example for each. The distribution of
event types is highly skewed; close to 82% percent of events are
fluent, sentence-internal word transitions. This makes it difficult
for automatic classifiers to learn the distinctive features of the
much less frequent, marked event types.



2.2. Modeling

To build an automatic detector of interword events we need to
model the relationships between the following entities:

o A, the acoustic features used by the recognizer
e F the prosodic features
o W, the string of spoken words Wi, W5, ...

o FE, the sequence of interword events E1,E», ...

A practical constraint for our work was to retain the standard
components of a speech recognizer, ie., the acoustic model
P(A|W) that characterizes how well an acoustic observation
matches a given word sequence, and the word language model
P(W) that estimates the a priori probability of a word sequence.
Both models are combined to give the a posteriori probability
P(W|A) of a word sequence. Acoustic and word language models
were of standard varieties, i.e., state-clustered Gaussian mixtures
[3] and backoft trigrams [6], respectively.

In addition to the standard models, the following statistical mod-
els capture the relationship between interword events and their
cues. The prosodic model P(E|F,W) predicts events from their
prosodic correlates. Finally, the event language model P(W,E)
describes the joint distribution of words and the intervening
events. The four model components are combined to estimate
the posterior event probabilities P(E|A,F).

All our models have the property that the posteriors of individ-
ual events E; in E are estimated, not E as a whole. This is both
convenient and legitimate, since the overall classification error is
minimized by maximizing the posterior of each £; independently.

2.3. Prosodic Model

As in prior work on disfluency and sentence boundary detection
[8, 10], we trained CART-style decision trees [2] to predict event
classes from local properties at the word boundary of interest.
However, we use the trained tree models not simply as classi-
fiers that output the most likely class, but as probability estimators
Pr(E;|F,W) to be combined with the other components.

We experimented with a large collection of features capturing the
three major aspects of speech prosody:

o Duration: of pauses, final vowel and final rhymes, normal-
ized both for phone durations and speaker statistics

e Pitch: FO patterns, preceding the boundary, across the
boundary, and pitch range relative to the speaker’s baseline

o Energy: signal-to-noise ratio using a front-end tuned for this
corpus, to capture energy fluctuations not due to channel

While the feature extraction makes extensive use of the forced
alignment of words to the speech signal (e.g., to extract phone
durations), it is important to note than none of our features en-
coded the identity of words directly, affording some degree of
independence from the word-based cues. This will be important
later on during model combination.

2.4. Event Language Model

The event language model describes the joint distribution of
words and events, Py(W,E). We treated words and events

as a single token stream, as described below. During testing,
the model can be used as a hidden Markov model (HMM) in
which the word/event pairs correspond to states and the words
to observations, with the transition probabilities given by the N-
gram model. The model is a generalization of the hidden seg-
ment boundary language model used in [12] where the number
of events types and the context length can be arbitrary. Given a
word sequence, a forward-backward dynamic programming algo-
rithm is used to compute the posterior probability Pra(FE;|W) of
an event F; at position i.

We trained a word/event N-gram model from 1.2M words of tran-
scripts that had been hand-labeled for the events of interest [9].
Each event was represented by an additional non-word token,
with two exceptions. First, we omitted event tags for filled pauses,
since they are redundantly encoded by the preceding word (“uh”
or “um”). Second, we did not represent the fluent, intra-sentence
boundary events explicitly, since they are implied by the absence
of any other event tag or filled pause word. These two conven-
tions lead to a more compact encoding of events and make bet-
ter use of the limited context of the N-gram model. A 4-gram
model was used for all results reported here, i.¢., a word or event
was conditioned on no more than three preceding words and/or
events.

Certain other kinds of information, such as the location of speaker
changes (turn boundaries) and long pauses (where the waveforms
had been cut for processing purposes) can be conveniently en-
coded in the language model as well, and are known to improve
its quality for speech recognition purposes [13, 11]. While con-
ceptually this information is part of the prosody, it is an empirical
question whether turn and pause information is best encoded in
the prosodic model, the language model, or both. Therefore, we
created two versions of the event N-gram model, one containing
such segmentation cues (“Seg N-gram™), and one without (“No-
seg N-gram”).

3. EXPERIMENTS
3.1. Methodology

We tested each of the three models (prosodic decision tree, event
language model with and without segmentation) in isolation for
their event detection accuracy. This was performed first on a test
set with known words, and then on recognizer output. The recog-
nizer word error on the test set was 46.8%, i.e., on average almost
every other word was incorrect.!

To run the event detector on recognizer output, we adopted the
expedient of simply conditioning the event models on the 1-best
hypothesis:

P(E|F,A) = P(E|F,argmax P(W|A))
w
This approach is suboptimal if event detection is the overall goal,

in that multiple hypotheses other than the best one might con-
spire to raise the overall probability of an event above the one

Note that we left a number of features out of the recognizer (such as
speaker adaptation) which would have either created a significant compu-
tational burden or an acoustic modeling mismatch between training and
test sets. This resulted in performance somewhat below the current state-
of-the-art.



Model Type Known Words Recognized words
% correct % correct | % accuracy
Chance 81.8 72.3 69.2
Prosodic Tree 88.9 76.1 72.9
No-seg N-gram 90.0 74.4 71.1
Seg N-gram 92.7 77.0 73.8

Table 2: Event recognition performance for three knowledge

sources. All score differences are significant by a Sign test
(p < .0001).
Detected Events
S else FP | DEL | OthDF | REP
S | 16880 5065 0 111 31 33
E else 3594 | 162847 0 439 174 170
o FP 0 0 | 5879 0 0 0
f DEL 393 1524 0 660 131 48
2 | OthDF 218 1338 0 191 442 341
& REP 43 892 0 34 97 | 2856

Table 3: Confusion matrix for segment-N-gram event classifier
on known words.

supported by the top hypothesis. In other words, for some ap-
plications we might want to sum event posteriors over the entire
N-best list:

P(E|A) = %P(E|W,F)P(W|A)

This approach is complicated by the need to identify correspond-
ing events in hypotheses that differ in their words; we plan to
study this approach in future work.

A related problem concerns the scoring of event detection accu-
racy given that the number of words (and hence events) differs
between reference and hypothesis. For this study, we aligned the
word/event strings and then counted the number of mismatched
events, as well as the number of events inserted and deleted. Sim-
ilar to the scoring practice used in speech recognition, we report
both the percentage of correctly identified true events, and the
accuracy (1— the number of event substitutions, deletions and in-
sertions divided by true total). A more stringent error criterion
might require the event times to match up as well.

3.2. Results

Table 2 summarizes the results obtained for the three models
in each of two test conditions: known and recognized words.
Chance performance (obtained by labeling each word boundary
as the else event) is also given for reference. Results show that the
N-gram with segment information performs significantly better
than either the prosody model (which also has access to segment
information) or the N-gram without segment boundaries.

Table 3 shows a confusion matrix for the segmentation LM on
known words. The matrix indicates that the infrequent disfluency
types (deletions and other repairs) are particularly difficult to de-
tect. This could be both because of their low frequency, their lack
of distinct lexical cues, or both.

When the same three models are applied to speech recognizer
output, we observe a substantial degradation in event detection
accuracy. As expected, the word-based models suffer most from
recognition errors in relative terms. In this condition, the no-

segmentation LM performs worse than the prosody model. No-
tice that the prosody is also negatively impacted by word recog-
nition errors, since its input features depend on phone alignments
and word boundary hypotheses. However, these seem to be more
robust to errors than information based on word identity.

A general point about our paradigm is that only data based on
(automatically aligned) correct words are used for model train-
ing, thus creating an inherent mismatch when testing on partially
incorrect words. We made this choice because recognition of
large amounts of speech data is a considerable computational
task. Thus, an overall improvement is expected if we trained
models on actual recognizer output, allowing the models to par-
tially compensate for systematic recognizer errors.

4. MODEL COMBINATION
4.1. Approaches

The goal of model combination is to make the best use of all
available knowledge sources while keeping the modeling compu-
tationally and statistically tractable. For example, it is not feasible
to explicitly model all combinations of word identity and prosodic
features because of the resulting large input feature space.

So far we have experimented with three different model combi-
nation approaches:

¢ Model interpolation. This is a weak approach that treats
multiple knowledge sources as alternative estimators of the
same probability distribution, which are combined by linear
interpolation. In our case, we combine the prosodic poste-
rior and the event LM posterior using an empirically opti-
mized weighting:

P(Ej|F,W) = APr(Ei|[F, W) + (1 — M) Peav(Ei|W)

A more refined (but as yet unimplemented) version is the
mixture of experts where A is replaced by a function of W
and F.

¢ Independent model combination. In this approach we as-
sume that the prosodic feature F' are largely independent of
the words W when conditioned on the events: P(F |E;, W) &
P(F|E;). This allows the following decomposition:

Prv(Ei|W)P(F|E;)
PENFWV) = —— L~~~
(EF W) P(FW)
The denominator does not depend on E; and so can be ig-

nored for classification purposes. P(F|E;) is proportional
0 PELF)
PE;)

that is trained on a uniform distribution of event classes. As
in the previous approach we introduce an empirically deter-
mined balancing parameter A to adjust the dynamic ranges

of the two models, giving us

, and can be directly estimated by a prosodic tree

A
_n [ Pr(Ei|F)

P(ENFW) o< Prag( ;W) (-4 ( 2207 )
(W) < P )= (S5t
¢ Joint modeling. Various approaches exist to allow training
of a single classifier that takes both word and prosodic in-
formation as input, while avoiding the large input space if



Model Type | Known Words Recognized words
% correct % correct | % accuracy
Seg N-gram 92.7 77.0 73.8
Interpolation 93.0 78.1 74.9
Independent 93.0 774 74.1
Joint Tree 93.1 76.6 73.3

Table 4: Event recognition performance for various model com-
bination strategies. All score differences are significant by a Sign
test (p < .005).

words were encoded as atomic feature values [1, 5]. We ex-
perimented with a very simple technique where the word-
based posterior probabilities are used as additional input
features to the prosodic decision tree. The tree, while not
having direct access to word identities, can model correla-
tions between the word-based LM decisions and prosodic
features.

4.2. Results

Table 4 shows event classification accuracies for the three model
combination approaches, for both known and recognized words.
For comparison, the Seg-N-gram results are repeated as a base-
line. The model interpolation approach is seen to be the most
robust model combination approach so far. It yielded virtually
identical relative error reduction (4%) over the N-gram classifier
alone, on both known and recognized words.

While the joint tree seems to have a slight edge on known words,
it predictably fares poorly on recognized words. A likely expla-
nation is that the posterior LM probabilities the tree is trained on
come from correct words. Testing on recognized words renders
these input features very noisy, creating a train/test mismatch.
The approach is expected to work better if large amounts of rec-
ognizer output were available for training the joint model.

The independent combination approach performs reasonably
well, though not as well as interpolation on recognized words.
The results given here actually used the Seg-N-gram in the com-
bination, which violates the independence assumption of the ap-
proach, since the LM makes use of some of the same turn and
pause-related information as the prosodic model. However, when
using the No-seg N-gram in the combination instead, accuracy
went down by about 1-2%. The likely reason is that the N-gram
makes more effective use of turn and pause information; thus,
omitting it hurts the overall model more than the independence
violation.

5. CONCLUSIONS

We have demonstrated a combined approach for the detection of
interword events (sentence boundaries and four classes of disflu-
encies) on spontaneous speech transcribed by an automatic recog-
nizer. The system combines prosodic and language model knowl-
edge sources, modeled by decision trees and N-grams, respec-
tively. Event detection accuracy is about 75% (78% correct) on
recognizer output with 46.8% word error, as compared to 93%
correct on human transcripts. In both test conditions, the combi-
nation of prosodic and word N-gram models gives a 4% relative
error reduction over the most powerful knowledge source, an N-
gram that includes turn and pause information.

The results reported here should be regarded as a baseline for fu-
ture work. For example, the overall model could be improved
by including parts-of-speech (POS) or other syntactic informa-
tion in the event model. (We showed in [12] that using POS im-
proves sentence boundary detection, and [5] observed that POS
modeling enhanced disfluency detection.) Other directions for
future improvement include event posterior probability combina-
tion across multiple N-best hypotheses, improved prosodic fea-
ture, and more sophisticated model combination.
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